An introduction
to
computer chess

Peter W. Frey

Northwestern University

Chess has been an intriguing problem for individuals interested in
machine intelligence for many years. Claude Shannon, the American mathe-
matician, first proposed a plan for computer chess in 1949 [81]. The
literature on mechanical chess-playing prior to this time reveals that the
early automatons were merely facades which concealed a skilled human
player [50]. Shannon believed that chess was an ideal problem for experi-
mentation with machine intelligence since the game is clearly defined in
terms of allowed operations (the legal moves) and in the ultimate goal
(mate). At the same time, chess is neither so simple as to be trivial nor so
complex as to be impossible. Shannon felt that the development of a
credible chess program would demonstrate that “mechanized thinking”
was feasible.

Shannon’s prescription for machine-chess was not modeled on human
chess play. As Charness describes in Chapter 2, humans master chess by
capitalizing on their vast memory capacity and by organizing information
in terms of meaningful piece configurations, plausible moves, and likely
consequences. Several million years of evolution have provided the human
with a tremendously complex visual pattern-recognition system and a large
memory capacity. These permit man to assimilate newly acquired informa-
tion in such a way that it may be subsequently recalled by using any one
of many different retrieval cues. Human problem solving is critically
dependent upon recognizing similarities among patterns and recalling
information relevant to the specific situation at hand. The modern high-
speed computer lacks both of these skills. Pattern-recognition skill in com-
puters is still at a primitive level. Computer memories are large and fast
but are organized simplistically in such a way that retrieval strategies based
on structural or conceptual similarities are difficult to implement.

54

Machine representation of the chess board

The computers that were available to Shannon in 1949 were much less
powerful than our present machines. Shannon also had an additional handi-
cap in that much less was known about human memory or human informa-
tion processing at that time. For these reasons it is surprising that
Shannon’s proposal for machine chess is remarkably similar to the methods
widely used today. Two of the strongest programs, KAISSA (the Institute
for Control Science, Moscow) and CHESS 4.5 (Northwestern University,
Evanston, Illinois), use sophisticated implementations of the basic strategy
suggested by Shannon.

Machine representation of the chess board

A modern computer consists of a central processing unit, a memory unit,
and multiple devices for the input (e.g., a card reader) and the output
(e.g., a high-speed printer) of information. The central processor can
perform simple operations such as addition, subtraction, and conditional
branching on numbers that are transmitted to it from memory. After the
designated calculations have been performed, the “results” are transmitted
back to memory. Input and output operations, because of their slow
speed, generally involve auxiliary devices that interface directly with the
machine’s memory. Most computer memories are quite large, ranging in
size from several thousand computer “words” to hundreds of thousands of
computer “words.” A “word” is a binary string (e.g., 01101001011 . . .)
in which each bit! can take on only two values, generally represented as
0 and 1. A typical computer word consists of 8 or 12 bits in minicomputers
and 48 or 64 bits in the high-speed giants. A 64 bit word is especially
convenient for chess programming for a reason that most chess players can
easily guess.

Shannon suggested that the chess board be represented by having 64
computer words each represent one of the squares of the chess board.
Each word in memory can be thought of as a simple mailbox that will hold
one piece (i.e., word) of information. Just like a mailbox, each word in
memory has a specific address such that the central processor can gather
information (e.g., several numbers) from specific memory addresses and
—after performing several calculations with these numbers—store the
result in one of these same addresses or into a new address according to
its instructions.

Shannon suggested that each piece be designated by a number (41 for
a White pawn, +2 for a White knight, +3 for a White bishop, etc.; —1
for a Black pawn, —2 for a Black knight, etc.). Each of these numbers
would be stored in the memory address that represented the square on
which the piece resided. An empty square would be represented by having
a zero stored at the address representing that square. More recent pro-
grams have followed this procedure, except a 10X 12 board is used rather

1 “Bjt” is an abbreviation for “binary digit”, either 0 or 1.

55

3: An introduction to computer chess

than an 8x8 board with a unique number, such as 99, stored at the
address of all squares which are “off-the-board.” In this way, the edges of
the board can be easily detected. Using this system, the central processor
can examine the contents of each memory address and determine if a piece
exists on that square and if so, what its type and color is. If the central
processor “examined” the address which represents KB4 (f4) and noted
a —3 stored at that address, it would “know” that a Black bishop resided
on KB4.

Legal moves from any given position can be determined quite easily by
simply noting the mathematical relationship among the squares. Assume
an assignment of memory addresses to the squares of the board as depicted
in Figure 3.1. QRI1 is assigned address 22, QN1 becomes address 23,
QR2 becomes 32, QR3 becomes 42, QR8 becomes 92, and KR8 becomes
99. All addresses between 1 and 120 that are not depicted in Figure 3.1
would be assigned a value such as 99 because each represents a ‘“‘square”
that is off the board. Now if a knight is located on any square, the 8
potential squares to which it might move can be calculated by adding the
following offsets to its present address: +8, +19, +21, +12, —8, —19,
—21, and —12. For example if a White knight resided on KB3 (square
47) its potential move squares are 47+8 or 55, 47419 or 66, 47+21 or
68, 47+12 or 59, etc. Potential king moves can be calculated in a similar
manner by using the offsets of —1, +9, +10, +11, +1, -9, —10, and
—11. After calculating the address of each potential move square, the
machine must check the present contents of the new address to determine
if the move is legal. If the address contains the number 99, the proposed
move is illegal since the new square would be off the board. If the address
contains a positive number, the move would be 'illegal since a positive
number indicates that a white piece is already occupying the square. If
the new address contains a negative number, the White piece can legally
move to the new square? and capture the Black piece that occupies the

S

S “
/.

)

Figure 3.1 “Mailbox” representa-
tion of the chess board.

G A
(7
O

)

"[/“Ey"' ;
43 2
o i

e :.%5 3,
B 5

2If the White piece were a king, the machine would also have to determine if the
square were attacked by an enemy piece.

56

Machine representation of the chess board

square. Finally if the new address contained the number zero, it would
represent an empty square to which the White piece could legally move.

Calculation of legal moves for a sliding piece such as a bishop, rook,
or queen is slightly more complicated. Assume a White bishop is located
on square XY (e.g., 35, where X=3 and Y=35). Examine address X+1,
Y+1 (i.e., 46); if this address contains a positive number the bishop
cannot move to this square; if this address contains a negative number,
the White bishop can move to the square (capturing a Black piece) but
can move no further along this diagonal; if the address contains a zero,
the bishop can move to this square, and address X+2, Y+2 (i.e., 57)
should be examined next. In this manner, each of the four potential direc-
tions for a bishop move can be checked until an edge (99) or another
piece is encountered on each. After X+1, Y+1 (46), X+2, Y42 (57),
X+3, Y+3 (68), etc. are examined, the machine then needs to look at
X+1, Y—-1 (44), X+2, Y-2 (53), etc. and then X—1, Y+1 (26),
X—2,Y+2 (17), etc. and finally X—1, Y—1 (24), X—2, Y2 (13), etc.
In this way, the machine can determine legal moves in all four potential
directions for the bishop.

The legal moves for a rook can be determined in a similar fashion.
Assume a rook on square ZW (e.g., 67, where Z=6 and W=7). Examine
address Z, W—1 (66), Z, W—2 (65), Z, W—3 (64), etc.; then examine
address Z, W+1 (68), Z, W+2 (69), etc.; next look at address Z+10,
w (77), Z+20, W (87), etc.; finally examine address Z—10, W (57),
Z-20, W (47), etc. In this way, the legal moves for a rook can be deter-
mined. For a queen, the legal moves for bishop and rook need to be con-
sidered in conjunction. Thus Shannon provided a relatively neat prescrip-
tion for making pseudolegal moves in chess by machine. I use the term
pseudolegal because I have failed to discuss the intricacies involved in
determining the legality of moving a pinned piece or considering castling
or an en passant capture. These additions make our mechanical move
generator more complex but do not threaten the feasibility of Shannon’s
approach.

There is a more modern way to represent the chess board that was first
suggested in the late sixties by a Russian computer-chess group [2] and
discovered, apparently independently, by the Northwestern computer-chess
group (see Chapter 4) and by Berliner [12] at Carnegie-Mellon. Assume,
for example, that one is programming a large computer that has a 64-bit
computer word. Now instead of assigning one computer word for each
square, we will assign 1 bit of each 64 bit computer word to a square. Next
we will represent the chess board in terms of 12 words. One word will
represent all White pawns by setting a bit to 1 if a White pawn resides on
that square and to zero otherwise. A second computer word will represent
all Black pawns in the same manner (i.e., 1= piece present, 0= piece
absent). A third word will represent all White knights, a fourth for all
White bishops, and so forth for all the pieces such that six words are used
for the White pieces and six words are used for the Black pieces. In

57

3: An introduction to computer chess

addition to pieces, we can use this procedure (called “bit maps” or “bit
boards”) to represent other information about the chessboard. Thus, we
can have one word that represents all White pieces, one word for all
Black pieces, one word for all squares attacked by White pieces, one word
for all squares from which a bishop or queen could pin a particular piece
against the king, etc. The power of this bit map procedure for expressing
chess relationships is limited only by the programmer’s skill in selecting
important patterns.

The advantage of this approach becomes more apparent when one
considers the instruction set for a modern computer. In addition to the
common operations of addition and subtraction, the computer can perform
Boolean instructions such as “logical-and” and “logical-or.” For example,
if we have two 8 bit words, say 01011100 and 11010011 and perform an
“and” operation with the two words, the result would be 01010000. The
new word would have a bit set (i.e., a 1) only at those positions where a 1
appeared in both of the original words. The “or” operation sets a bit in
the new word at each position where a 1 appears in either of the two
original words. For our example case, an “or” operation would produce
11011111. These operations can be applied to chess programming with
highly desirable results.

Consider generating all legal moves for a White knight on KB3. First,
the central processor “fetches” a bit map from memory that has a bit set
for each position representing the squares to which a knight on KB3 could
move. In this schema, central memory would contain 64 bit maps repre-
senting potential moves for a knight from each of the 64 squares on the
board. Secondly, the central processor would fetch a bit map representing
the positions of all White pieces presently on. the board. The central
processor would then negate (change 1's to 0’s and 0’s to 1’s) the White
piece map and then “and” this new map with the knight move map. The
resulting bit map would represent all pseudolegal moves for the knight.
Notice that move generation in this case involved two “fetch” instructions
and two “Boolean” instructions. The Shannon “mailbox” procedure re-
quires many more computer operations to determine the same result.

Consider a simple problem in chess. During the middle game, White
decides to examine his attacking possibilities. He poses the question, “can
I fork Black’s queen and king with one of my knights on this next move?”
Answering this question requires an assessment of several subgoals such as

1. Does there exist a square that is a knight’s jump away from both the
Black king and Black queen?

2. Is there a White knight positioned such that it can jump to the forking
square in one move?

3. Is the forking square undefended by Black?

For a human, the answers to these three questions can be determined at a
glance. For a machine, the answer is more difficult to determine.

58

Machine representation of the chess board

If we start at the goal and work backward using Shannon’s mailbox
method, we first need to add the eight Knight offsets (+8, +19, +21, etc.)
to the Black king square and then store these eight locations. Next we add
the eight knight offsets to the Black queen square and compare the
resultant of each addition to the eight stored values. If we find a match,
then we must test the square’s contents to determine if it is on the board
(i.e., not 99) and if no White piece presently occupies the square (i.e., not
a positive number between 1 and 6). If we find a match and the address
does not contain a positive number, we have determined that a forking
square exists.

Next we must determine if one of our White knights is located a knight’s
jump away from this square. This can be done by adding the eight knight
offsets to the address of the forking square and then checking to see if any
of these contain a +2 (a White knight). Finally, we need to determine
if the forking square is attacked by a Black piece. This would be a tedious
operation if we needed to check the legal moves of each Black piece to
see if it can attack the forking square. Generally the attack squares for
each piece are usually calculated and stored at the beginning of each move
calculation. These data can then be used repetitively during the subsequent
analyses of potential moves. In any event, the machine must execute at
least S0 computer instructions in order to answer the question in an
affirmative manner.

On the other hand, let us examine a bit map approach to this same
question. First, we would “fetch” bit maps from memory for the potential
knight moves from the Black king’s square, from the Black queen’s square,
and from the White knight’s present square. Next, the machine would fetch
a bit map from memory representing the location of all white pieces. This
map would be negated (a Boolean “not” operation, all 1’s becomes 0’s, all
0’s become 1’s) and the resultant map would be compared using an
“and” operation with the resultant map produced by “and”ing the other
three bit maps. If this final map were nonzero, a forking square exists.
Finally, a bit map representing all squares attacked by Black would be
“and”ed with the previous result. If this last operation produced a map
containing all zeroes, one would know that the forking square was not
being attacked by Black. Note that the bit map approach answers the same
question, but uses only 5 “fetch” instructions, 1 “not” instruction, and 4
“and” instructions. A very significant increase in machine efficiency.

At present, many computer programs use bit maps which are oriented
toward move generation and basic relationships among the pieces. There is
no reason, however, why these bit maps cannot represent complex relation-
ships such as “all squares accessible to a particular bishop in three moves
given the constraints of the present board configuration.” The advice-taking
program developed by Zobrist and Carlson [101], which has been “tutored”
by Charles Kalme, makes extensive use of bit maps as part of its pattern
recognition scheme.

59

3: An introduction to computer chess

Static evaluation functions

Shannon [81] proposed that a move be selected by considering potential
moves by White, replies by Black, counter-replies by White, etc. until
relatively static terminal positions were reached. This examination of move
sequences is commonly referred to as the look-ahead procedure and will
be discussed at length shortly. Shannon proposed that each terminal posi-
tion be evaluated in a mechanical way. He suggested a crude evaluation
function which examined the material balance (9,5,3,3,1 for queen, rook,
bishop, knight, and pawn, respectively), the relative mobility for each side
(number of available legal moves), and pawn structure (penalties for
doubled, backward, and isolated pawns). In his appendix he suggested
additional factors for consideration such as control of the center, pawn
structure adjacent to the king, passed pawns, centralized knights, knights
or bishops in a hole, rooks on open files, semiopen files, or on the seventh
rank, doubled rooks, attacks on squares adjacent to the enemy king, pins,
and other factors. The idea was to weigh each of these factors according
to its importance and then add all items together to determine the value
of the terminal position. Once these values have been determined, the
machine can select a move which would “lead toward” the most desirable
terminal position.

Other factors for a general evaluation function have been suggested by
Shannon’s successors. Greenblatt and his associates at MIT [48] have
included a “piece-ratio change” term that encourages piece exchanges when
the machine is ahead in material and discourages piece exchanges when it
is behind. The MIT group also included a king-safety term that encourages
the king to remain on the back rank when queens are on the board. Church
(see Chapter 6) has suggested that the king safety term should include
the number of moves required before the king can castle. Turing [96]
suggested a king-safety factor that “imagines” a queen on the king’s square
and subtracts points for the number of legal moves which the queen would
have from that square. It is important to realize that king safety becomes
less important as the number of pieces on the board diminishes and that
in the end game the king-safety term becomes a hindrance. In the end
game, for example, the Northwestern program (see Chapter 4) adds
evaluation points if the opponent’s king is close to the edge of the board.

In writing an evaluation function for a chess program, it is essential
that efficient computer instructions be employed because this aspect of the
program is used repetitively (i.e., ten thousand to 100 thousand times
during each move selection). For this reason it is probably best not to
include every conceivable evaluation term in the function since each new
term means a small increment in the time which is required to evaluate each
terminal position. A good evaluation function is one that assesses the
critical aspects of the position in question and does this as efficiently as
possible. For each new term which is added to the evaluation function one
must ask if the chess information gained is worth the cost in computation

60

. The look-ahead procedure

time that this additional assessment will require. The time requirement is
important, of course, because computers play chess using the same tourna-
ment rules as humans, such as requiring 40 moves in the first two hours of
play.

The structure of the evaluation function is dependent on the type of
look-ahead procedure which is employed. In a program such as Berliner’s
[12], the emphasis is on evaluating a small number of terminal positions
(e.g., 500) in a very thorough manner and therefore a highly complex
evaluation function is necessary. In programs in which a very large number
of terminal positions are examined, the evaluation function must be very
fast and thus simplistic. For example, the “Technology” chess program
by Gillogly at Carnegie-Mellon [46] examines only the material advantage
(or disadvantage) for each terminal position and looks at as many as
500,000 terminal positions before selecting a move in tournament play.
At present it is not clear which strategy will eventually lead to the best
machine chess although our present best model, the human, clearly uses the
former approach rather than the latter. |

Our experience in computer chess over the past few years seems to
indicate that future chess programs will probably benefit from evaluation
functions that alter as the general chess environment changes. Such
“conditional” evaluation functions will consider the type of opening, the
stage of the game, the pawn structure, and the king defenses and then
construct an evaluation function appropriate to the particular position.
Computer programming techniques that use a hierarchical structure involy-
ing “discrimination nets” and “decision tables” are useful for this purpose.
This modification would make the machine’s evaluation procedure more
similar to human analysis.

The look-ahead procedure

The most obvious way to examine future moves which might occur in a
chess game is to generate all legal moves for the side on-the-move, all legal
replies for his opponent, all legal counters, etc. until the possible sequences
of moves and counter-moves seem to be sufficiently deep to make a
terminal evaluation appropriate. As Shannon [81] pointed out in his classic
paper, this “type-A strategy” has a serious drawback. The number of legal
moves at each position (on the average, about 38) and the depth which
seems necessary for reasonable play (6~10 plies), generate an enormous
number of terminal positions. For example, a 2-ply (i.e., one move for
each side) analysis of all legal moves, assuming 38 moves at each position,
would generate 1444 terminal positions. A 4-ply analysis would generate
2,085,136 terminal positions. A 6-ply analysis would generate 3,010,936,-
389 terminal positions! This difficulty with the exhaustive look-ahead
procedure is referred to as the “exponential explosion” since the number
of terminal positions increases exponentially with depth.

61

3: An introduction to computer chess

The look-ahead procedure is often discussed in terms of a “game tree”
since a diagramatic depiction of the possible sequences of moves leads to
a structure that branches out much like a tree. The original position is like
the trunk of a tree which leads to several moves (the major limbs) which
in turn lead to counter-moves (the large branches) which lead to counter-
counter-moves (the small branches), etc. The point at which one branch
subdivides into many smaller branches is called a “node” of the tree and
represents an intermediate board position in the game tree.

Shannon suggested that the exponential-explosion problem be solved
by examining only a small subset of the potential legal moves at each
node. He labeled this approach as a “type-B strategy.” If one makes a
6-ply analysis examining only 5 continuations at each node instead of 38,
the number of terminal positions would be 58 rather than 38% or “only”
15,625 positions. Since there are never more than 5 reasonable moves in
any given position [31], this suggestion appears to have great merit. One
merely needs to select 5 “plausible” moves at each node and examine
these continuations while ignoring all others. To implement this approach,
the machine must be able to determine which of the potential moves at
each node are most reasonable. The machine subroutine which is designed
for this purpose is called the “plausible-move generator.”

Human chess players have a great facility for selecting reasonable moves
and reasonable replies at each node. The ability of skilled players to play
a respectable game of “speed” chess (e.g., 5 seconds per move) demands
this. This human ability seems to be perceptual (see Chapter 2) since it is
unlikely that the consequences of each move can be examined thoroughly
in 5 seconds. When de Groot [31] studied the protocols of skilled players,
he reported that the experts failed to select the best move because it was
not even considered in their verbal analysis of the position. Apparently,
their “plausible-move generators” were not as discerning as the ones used
by the grandmasters. The success of Shannon’s “type B” strategy depends
upon our ability to develop a plausible move generator for the computer.
History has shown that this is a very difficult problem. Most computer
chess programs contain fatal blind spots in this regard and this severely
limits the quality of their play.

Let us assume for the moment, however, that it is possible to develop a
reasonable static evaluation function and a reasonable plausible-move
generator for our machine. Given these two basic functions, how can we
use them to decide which move to select when confronted with a specific
game position? How do we construct a game tree and then use it to select
our move? There are actually several procedures for doing this.

The method initially suggested by Shannon involves the “minimax”
procedure proposed by von Neuman and Morgenstern [97] in their classic
book. A move is selected by “looking ahead” in the game tree from the
base position to some predetermined depth. At each node the machine
assumes that the player who has the move will select that alternative that
is “best” for him. “Best” would be defined in this case by the static evalua-

62

. The look-ahead procedure

tion function. If White has the move from the base position and if the static
evaluation function is represented such that large numbers reflect an advan-
tage for White (and small numbers favor Black), then the machine will
maximize (choose the pathway leading to the largest evaluation) at the
odd nodes (i.e., White’s turn to move) and will minimize (choose the
pathway leading to the smallest evaluation) at the even nodes (i.e., Black’s
turn to move). This process of alternately choosing the maximum value
and minimum value leads to the descriptive name of “minimaxing.”

The machine’s procedure for analyzing a game tree can best be ex-
plained by using an example. Let us assume a starting board position with
all pieces and pawns in their original position. White, as always, has the
first move. Assume that the machine analyzes to a depth of 4 half-moves
(4 plies) and uses its plausible move generator to develop the game tree
depicted in Figure 3.2. The squares represent a position in which it is
White’s turn to move and the circles represent a position in which Black
has the move. The pathways between successive positions each represent
a potential move which seems plausible to the machine. The nodes of the
game tree can be generated in many different orders, but generally a
“depth-first” procedure is used. That is, the first branch is explored to its
maximum depth before the machine starts on a second branch. An alternate
procedure would be a “breadth-first” search in which all the nodes at one
level are explored prior to examining nodes at a deeper level. The nodes in
Figure 3.2 are numbered in the order in which they would be generated
if a “depth-first” search had been employed. The machine would first
examine (1) P-K4, P-K4; (2) N-KB3, N-QB3, evaluate the terminal
board configuration and then store this value. Next, the machine would
examine (1) P-K4, P-K4; (2) N-KB3, P-Q3 apply the static evaluation
function, and store the result. Next, the computer would explore (1)

P-K4 P-Q4
P-K4 P-QB4 P-K3 P-Q4 N-KB3
10} 15 23 29
N-KB3 B-B4 N-KB3 P-Q4 N-QB3 P-QB4/ \N_KB3 P-QB4
N—QBSP—QS o P-Q3 0 N-QB3 @ P—Q4 P—K3P-QB:’.K53 P-KN3
BB4/ \N-KB3 P-asf \N-k2 B-NS

-B4
PEF—K 3

P-Ky 3

5] (6] [8][9] [12] [13] [14] [17] 8] [20] [21] [25] [ase] o8] [31] [o2] [a3]

+1 +1 40 +3 +7 +4 +8 +4 +19 —2 +1 —7 +4 +0 +3 —4 +4
Figure 3.2 Sample game tree for the opening position in chess.

63

3: An introduction to computer chess

P—K4, P-K4; (2) B-B4, B-B4, evaluate, and store the result. This pro-
cedure would continue until the entire game tree in Figure 3.2 had been
generated and an evaluation calculated for each of the 17 terminal
positions.

After each position is evaluated, the value is returned to the level
above (the immediate parent) and it becomes the “best value so far” for
that node. Each additional descendent of this same parent node is examined
in the same fashion, and when a value is obtained for each terminal posi-
tion, the value is compared to the best value found so far. If the value
associated with the most recent evaluation is better for the side to move
than the best value so far, the new move is stored in memory and its value
becomes the new “best value so far.” After all of the descendents of each
node have been examined, the best value so far and the move associated
with that value are “backed-up” to the level above. This process is con-
tinued until a value and a move for the current position are determined.

For expository purposes, let us assume a simple evaluation function for
the opening which is computed as follows. Let LW and LB equal the
number of legal moves for White and Black respectively, let CW and CB
equal the minimum number of moves required for White and Black to
castle respectively, and let SW and SB equal the number of central
squares (K4, K35, Q4, Q5) attacked by White and Black respectively. Our
evaluation function is then defined as: (LW-LB)+[3 X (CB-CW)]+
[3 X (SW-SB)]. The larger the number, the better the position from
White’s point of view. The numbers which appear underneath each
terminal position in Figure 3.2 represent the result of applying this evalua-
tion function to each of these positions. The intermediate calculations are
presented in Table 3.1. Note the laborious calculations necessary for even
a very simple evaluation function such as this one.

To select a move, the computer would apply the minimax procedure
to this game tree. The two terminal positions “sprouting” from node 4
would be examined and the minimum evaluation (it is Black’s turn to
move) would be “backed-up” to node 4 (+1). The two terminals “sprout-
ing” from node 7 would be examined next and the minimum evaluation
would be “backed-up” to node 7 (+0). In a similar manner, “backed-up”
values for nodes 11, 16, 19, 24, 27, and 30 of +4, +4, —2, -7, +0,
and —4 respectively would be selected. Next, the machine would maximize
at node 3 (it is White’s move), “backing-up” that value from its de-
scendents, nodes 4 and 7, which is largest (+1). Maximizing at nodes 10,
15, 23, and 29 would produce “backed-up” values of +4, +4, +0, and
—4 respectively. Moving toward the base node again, “backed-up” values
for nodes 2 and 22 would be selected by minimizing since it would be
Black’s turn to move. Thus node 2 would have a value of +1 and node 22
would have a value of —4. Finally, the machine would select a move at
the base node by maximizing between nodes 2 and 22 and this would lead
to the selection of node 2 (i.e., P-K4). Although this minimax procedure
can lead to some confusion when it is applied by humans, it is easily

64

Backward pruning

TABLE 3.1 Preliminary calculations used by a primitive
evaluation function

Legal moves Moves to castle Center squares attacked
Terminal
position White Black White Black White Black

5 27 29 2 3 3 3

6 27 32 2 3 3 2

8 33 33 2 2 2 2

9 33 27 2 2 2 3
12 27 29 2 4 3 2
13 27 29 2 3 3 2
14 27 25 2 4 3 3
17 38 34 3 3 3 3
18 38 22 3 3 3 2
20 33 35 3 3 3 3
21 31 33 3 2 3 1
25 30 34 4 3 3 3
26 30 29 4 4 3 2
28 29 29 3 3 4 4
31 30 24 4 3 3 3
32 30 28 4 2 3 3
33 30 23 4 2 3 2

followed by a machine. The choice rule at each node is precise and
therefore the machine only needs to remember whether to minimize or
maximize at odd-ply levels and vice-versa at even ply levels. The operation
of selecting the largest or smallest value for the potential descendents at
each node is trivial for the machine. Thus the minimax strategy provides a
workable procedure for the machine to use in selecting a move.

Backward pruning

Although Shannon apparently never implemented his plan for playing chess
by computer, Newell, Shaw, and Simon [74] did and soon discovered that
much of the laborious tree-searching involved in the minimax procedure
can be avoided. The reason can be easily demonstrated by examining
Figure 3.2. Assume that the computer generates nodes sequentially in the
depth-first order depicted in Figure 3.2 and evaluates each terminal node
as soon as it has been generated. After all of the descendents of node 4
have been generated and the resulting terminal positions have been
statically evaluated, the machine can “back-up” the appropriate evalua-
tion to node 4. In the present case, this would be a value of +1. Now at
node 3, it is White’s turn to move so that the larger of the values backed-up
at nodes 4 and 7 will be selected. For this reason, the machine can deter-
mine in advance that node 3 will eventually have a value which is +1 or
larger. The value would never be less than +1 since White could always
select the pathway leading to node 4. Given this information, the computer

65

3: An Introduction to computer chess

can deduce that it is a waste of time to generate and evaluate node 9. The
reason for this is that the evaluation value for node 8 is less than +1 and
black will choose the descendent of node 7 with the smallest value.
Therefore node 7 will have a final backed-up value which is 0 or less
independent of the value eventually computed for node 9. Since 0 is less
than +1, White will choose the pathway to node 4 and not the pathway to
node 7. Therefore it is senseless to examine any further descendents of
node 7 once a value has been found which is equal to or less than +1.
This reasoning can be applied throughout the tree. When the branching
factor (i.e., the average number of descendents for each node) is high,
this procedure will lead to a substantial reduction in the number of nodes
in the game tree which need to be generated and evaluated. In the example
presented in Figure 3.2, this “pruning” procedure would eliminate nodes
9, 19, 20, 21, 29, 30, 31, 32, and 33 from the minimax search. When the
game tree involves more descendents from each node (say 25 instead of
only about 2 in our example) and the tree extends to 5 or 6 plies in depth,
this “backward-pruning” method can lead to a tremendous saving in search
time.

The technical name for this procedure is the o8 algorithm because. the
value for the move which is currently best for White during the tree search
is labeled « while the value for Black’s best move so far is called 8. This
o—@ algorithm has made the minimax procedure feasible in many problem-
solving tasks where it would otherwise be totally unrealistic because of time
constraints. The beauty of this modification is that it always produces the
same result as the full minimax procedure [59]. One factor that is very
important to the efficiency of an «—8 minimax tree search is the order in
which the moves are generated and tested. If White’s best moves and Black’s
best replies are considered first, a great many weaker alternatives need not
be examined. For example, if White considers QxP and Black can reply
BxQ, it is wasteful for Black to generate and evaluate 34 other moves
which do not involve the capture of White’s queen. If the queen capture
is examined first, White ‘“knows” that QxP is a “losing” move and there-
fore should not be attempted. Moves such as BxQ are called “refutation
moves” since they refute the opponent’s previous move(s). By examining
refutation moves first, the machine can reduce the number of nodes in the
tree by a substantial amount. The efficiency produced by proper ordering
of the moves is enormous since each pathway eliminated early in the tree
also eliminates all the potential descendents that would “sprout” from that
pathway.

Present computer-chess programs place great emphasis on ordering the
moves at each node such that strong moves will be examined first. To do
this, the program uses “heuristics” (i.e., general rules-of-thumb) that
provide useful information concerning what kinds of moves in a particular
situation will lead to rapid pruning. One important heuristic is that of
examining all capturing moves first. Captures are common pruning moves
since they refute any previous move by the opponent which has left a

66

Backward pruning

piece en prise. Captures also reduce the size of the game tree by eliminating
pieces from the board. This usually has the effect of decreasing the number
of legal moves that can be generated from each node. A decrease of a few
moves in a tree growing exponentially has a surprisingly large effect.

Another commonly used heuristic is to have the program store previous
refutation moves in some other part of the game tree and to try these moves
again in each new position of the tree. In some situations Black, for
example, may have a move that is strong against a variety of moves for
White. In this type of situation, poor moves by White can be most efficiently
“pruned” from the game tree by always examining first this one move for
black each time it is Black’s turn to move in the tree search. Because this
procedure involves remembering previous refutation or “killer” moves, it
is often referred to as the “killer heuristic.”

It is interesting to note that this look-ahead minimax procedure is
essentially a blind search. It is only after the sequence of moves has been
generated and the terminal position evaluated that the machine can deter-
mine if this prior activity was worthwhile. This process bears some
resemblance to Darwinian evolution. Reproduction in biological organisms
produces new variations in a somewhat haphazard fashion. These varia-
tions are acted upon by natural selection (i.e., nature’s evaluation function).
Selection among the new variations occurs by a retrospective process. Only
those variations that survive the rigors of the natural environment persist
long enough to reproduce. The minimax procedure works in a similar
retrospective manner, selecting those variations that “survive” the scrutiny
of the evaluation function. The success of this “blind” search process in
biological evolution indicates the feasibility of the procedure. However,
biological evolution has taken millions of years while the selection of chess
moves must occur in 3 minutes or less. The weakness of this process,
therefore, lies in its inefficiency rather than in its ultimate feasibility.

In a recent article in Artificial Intelligence, a Russian group [3] has
suggested a technique for making the tree search more efficient. Their idea
is based upon the observation that the machine’s calculations in the game
tree are highly repetitive. For example, there might be a position on the
board in which (1) NxP, PxN; (2) BxP, BxB; (3) RxB, RxR; (4) QxR,
QxQ or some similar exchange is possible. In order for White to determine
that these exchanges are not worth initiating, the’ machine must examine
all captures on this square in all possible orders. Unfortunately, at each
new node in the tree where it is White’s turn to move, this same potential
set of captures may exist and thus need to be refuted each time by generating
all possible capture sequences. Most programs would refute NxP several
thousand times in this way at various locations in the game tree. Obviously
this is highly wasteful since most of the positions in the game tree are
highly similar and the outcome of this exchange will be the same in almost
all of these cases.

The Russians have suggested a procedure which they call “the method
of analogies.” The strategy is to examine refutation moves in detail and

67

3: An introduction to computer chess

determine all factors which are necessary for this refutation to remain true.
This is really a case of theorem-proving since it attempts to establish a set
of postulates that must be true for the refutation to remain effective. The
actual proofs are quite complicated and involve such information as the
number and types of pieces bearing upon a particular square, the absence
of any pieces which might block the attack pathway of a sliding piece, and
the pin status (relative and absolute) of pieces involved in the exchange.
If such a plan is implemented, the move NxP could be rejected after
checking a few board features rather than having to generate and test all
sequences of captures each time. This strategy could produce a very
significant improvement in middle-game play since it would produce rapid
pruning in the game tree and would thereby eliminate many pathways
from further search.

There are tree-searching methods that are different from the ¢—g mini-
max procedure. General discussion of these are provided by Nilsson [77]
and by Slagle [88]. In Chapter 7 of this book, Harris describes one of the
more powerful alternatives which is similar to progressive-deepening as
described by de Groot [31].

Quiescence

In using the look-ahead game tree approach, it is often difficult to deter-
mine when a node should be considered terminal and ready for evaluation.
A major source of error is the premature evaluation of a node giving
an erroneous impression of the advantage or disadvantage of that position.
The problem for the machine is to avoid applying the “static” evaluation
function to a position that is not static or “quiescent.” If an evaluation is
made on an active node, such as one representing a position in the middle
of a piece exchange, the calculated value may be grossly in error. It would
be a blunder of major proportions to evaluate a position after RxQ if the
next move for the opponent was BxQ. The notion of quiescence applies
to material evaluations and also in a more subtle way to positional evalua-
tions. For example, a knight or bishop may have to move to a relatively
unfavorable square in order to eventually reach its “post” in a hole or in
some other desirable position. If an evaluation is made while the knight
or bishop is “en route,” the machine may conclude that the necessary
sequence of moves is not worth examining any further. Unfortunately, it
has been very difficult to program a machine to “understand” whether a
position is active or static.

Many programs try to compensate for this lack of understanding by
always examining capture sequences to their end until no additional
captures exist. Unfortunately even this approach is oblivious to pins or
other positional moves that guarantee a gain in material for the opponent.
Checks on the king can also lead to serious problems. In many positions a
series of checking moves can proceed for 10, 12, or 14 plies without really
accomplishing anything. Unfortunately, the machine is weak at discriminat-

68

‘Plausible-move generators

ing between “aggressive” checks and “useless” checks. In order to prevent
an exponential explosion of the game tree, most programs place a limit
upon the number of checks which can be pursued without an immediate
gain of material or mate. In most cases, this limit is about 2 extra plies.
Thus, if a tree search were structured for a 5-ply search in general, checks
might be pursued to 7 plies and captures out to 12 or 15 plies, whatever
was necessary to exhaust the different sequences of captures. These pro-
cedures clearly improve the quality of play. It would be preferable, how-
ever, for the machine to be able to assess the quiescence of a position
directly and terminate its search on this criterion rather than at some fixed
depth which has no rationale other than the time limit for choosing a move.
Harris amplifies this point in Chapter 7.

It might seem reasonable to solve this problem by searching the game
tree to great depth and thereby looking far enough ahead to compensate
for a less-than-perfect evaluation function or for a poor notion of quies-
cence. It has been easier to increase the search depth by acquiring faster
machines and developing more efficient tree-search procedures than it has
been to improve the machine’s evaluation function or its notion of
quiescence. Depth of search, in and of itself, produces a considerable
increase in the machine’s degree of “understanding.” Many chess concepts
are clearly depth dependent. With a fixed 2-ply search supplemented by a
check and capture search, the machine will completely miss a simple fork-
ing maneuver. With a 4-ply search, however, the computer appears to
develop an “understanding” of the fork and will select moves to avoid this
simple trap.

Greater depth can be achieved in the middle game if a very primitive
evaluation function (such as an analysis of material only) is used. Addi-
tional depth might also be obtained by developing a special central process-
ing unit with an instruction set including chess operations. Even with the
blinding speed available with modern hardware, this approach would still
have an optimistic limit of around 8 ply for a full-width search during the
middle game. This does not augur well for brute force solutions to machine
chess since most good human players find it necessary to calculate to 12
or 14 plies at least once during the middle game. Time will tell whether
hardware innovations will permit future machines to substitute brute
strength for finesse. The mathematics of the situation, however, are highly
unfavorable to the brute strength approach.

Plausible-move generators

For those who have concluded that a brute-force, full-width search (i.e.,
Shannon type-A strategy) will never be able to look ahead far enough to
play acceptable chess, there is a second method, that of selecting only a
few of the progeny at each node for further examination (i.e., Shannon
type-B strategy). This can be dangerous since a move excluded trom the
game tree can never be made across the board. If the machine were

69

3: An introduction to computer chess

successful, however, in developing a good plausible move generator such
that only 3 moves, on the average, sprouted from each node, the depth
of search could be increased dramatically. A 12-ply search with 3 sprouts
per node produces 531,441 terminal positions. With 30 sprouts per node,
the number of terminal nodes becomes 810,000 after only 4 ply. This
type of calculation has convinced many people, including Shannon, that
emphasis should be placed on developing an accurate plausible-move
generator. y

The Greenblatt program [48] attempts to select the most promising
moves at each node. The search width for tournament play is usually set
at 15, 15, 9, 9, and 7 moves for the first, second, third, fourth, and fifth
ply, respectively. Moves are selected that cause pieces to attack squares
in the center and near the enemy king. Moves that block opponent’s pieces
or unblock friendly pieces are also considered. Priority is given to attacks
on weak pawns, pinned pieces, pieces defending other pieces, etc. All
checks are investigated within the first 5 ply. All captures are examined
within the first 2 ply. Priority is given to considering a few moves of several
different pieces rather than many moves of only one or two pieces. In all,
Greenblatt uses about 50 heuristics for computing the plausibility of the
different descendents at each node.

Berliner [12] also places great emphasis upon reducing the branching
factor at each node. He feels that a successful move generator will average
only 1.5 descendents from each node in the tree. Because of this belief,
he is willing to accept very long computation times for determining plausible
moves and thereby restrict his game tree to 500 nodes or less. This ap-
proach more nearly approximates human chess play than do the brute-force
procedures. The success of Berliner’s approach will depend very heavily
upon his skill in transmitting a tremendous amount of chess knowledge to
the machine.

The difficulty of building an “intelligent” plausible-move generator
can best be illustrated by citing several examples. Consider the board posi-
tion depicted in Figure 3.3, taken from a game between Kirdetzoff (White)

Figure 3.3 Position after 16 moves
between Kirdetzoff (White) and
Kahn (Black), Copenhagen, 1918.

70

Plausible-move generators

and Kahn (Black) played in Copenhagen in 1918. Black, with the move,
has several plausible lines of play. Developing the bishop seems reasonable
since it would also double his rooks. The queen pawn is en prise, so moves
that defend it are plausible. White’s QN pawn can be captured with
resultant pressure on White’s queen rook. All of these moves are reasonable.
The winning move for Black, however, was QxN! Play continued (17)
PxQ, B-R6+; (18) K-N1, R-K3; (19) Q-B7, QR-K1; (20) R-KBI,
R-K8; (21) White resigns. The move Q-B7 for White was necessary to
prevent R—N3 mate. This is a nice example of Morphy’s sacrifice, clearly
demonstrating that a positional advantage can be worth much more than
a material advantage. For a machine, however, losing a queen for a
knight is an “unthinkable” exchange and would probably not survive a
superficial plausibility analysis. If QxN is not even entered into the game
tree, it can never be selected as the across-the-board move.

A second example of this same idea is taken from a recent game
between Adorjan (White) and Tompa (Black) in the 1974 Hungarian
championship. After Black’s 27th move (N-R4), the position depicted in
Figure 3.4 was reached. In this active position, White has a number
of seemingly aggressive moves. Play continued (25) QxN!, PxQ; (26)
R-N3+, B-N2; (27) N-BS5, Q-Bl1; (28) NxB, PxP; (29) N-K6+,
K-R1; (30) BxP+, P-B3; (31) RxP!, Black resigns. Again we observe
a queen sacrifice that gains a positional advantage at a major cost in
material.

In both of these examples, a sacrifice in material was followed by a
series of moves ultimately leading to victory. However, these subsequent
moves were not an uninterrupted sequence of checks or captures and
therefore the value of the queen sacrifice could not be easily analyzed with
a deep but narrow tree search. Most programs place heavy emphasis on
material factors simply because this strategy is necessary to maintain
reasonable play. If the machine were to give positional factors equal weight,
it would routinely throw away its material in unsound sacrifices. In the
great majority of cases, a loss of a piece is tantamount to losing the game.

Il,;’/l }» e
¥

Figure 3.4 Position after Black’s
27th move, Adorjan (White) vs,
Tompa (Black), Hungarian Champ-
ionship, 1974.

3: An introduction to computer chess

The use of a reasonable plausibility function seems to automatically exclude
the brilliant sacrificial moves which add flair and excitement to chess.

In addition to material sacrifices, there are other excellent moves often
missed by a plausible move generator. Figure 3.5 depicts a tactical
position with White to move. Black has a pawn advantage and White’s
queen is presently en prise. White can win a pawn by (1) QxQ+, RxQ;
(2) BxP or can simply hold his position by moving the queen to defend
the bishop such as Q-N5 or Q-N8+. Each of 'these moves would be
highly plausible for a machine since they win or “save” material. The
correct move, however, is one which leaves both the queen and bishop
en prise, namely B—Q6. If Black responds with QxQ, then R-B8 is mate.
If Black responds with RxB, then Q-N8+ leads to mate. If Black captures
the bishop with his knight, then QxQ+ wins. Only a dynamic analysis
indicates that B—Q6 is correct and thus a plausible move generator that
selects moves on a static basis would most certainly exclude B—Q6.

A final example is depicted in Figure 3.6. In this position, Black has
a material advantage and it is White to move. There are a large number
of potentially plausible moves but the correct move is one that seems, at
least superficially, to be unsound. The proper move is Q-R6, virtually

Figure 3.5 The best move for
White seems plausible only after con-
siderable analysis.

Figure 3.6 White can launch a
winning attack with a move that, on
the surface, appears to be unsound.

72

Full-width searching

destroying Black’s game. Few, if any, computer programs would consider
this move plausible on the basis of a static analysis of the position. Only
dynamic analysis would show that the rook is “riveted” to the back rank
and therefore cannot capture the queen.

One of the characteristics of chess as a research environment for
analyzing heuristic search is that the most promising continuation is often
not discernible from a superficial analysis of the position. This is clearly
evident in the examples just cited. Techniques based on a hill-climbing
strategy, such as forward pruning, face serious problems in this type of
search environment. Berliner has recognized this inadequacy of traditional
forward-pruning search procedures and has developed a coping strategy
he calls the “causality facility” [12]. This technique permits his program to
discover an important problem deep in the search tree and to pass this
information down to lower levels of the tree. The new insight is then
used to restructure the search at shallow levels. This approach more nearly
approximates a human search process and provides a viable alternative to
the full-width search strategy. '

Selective searching, deep in the game tree, can lead to additional prob-
lems whether it results from forward pruning or is part of a quiescence
analysis following a limited-depth full-width search. If the tree-search is
not tightly structured and firmly controlled, the machine can get lost at
some deep level of the tree and spend hours trying to select the proper
variation in a chess environment in which each pathway leads to an
exploding number of potential continuations. This problem plagued the
TECH II program from MIT at the 1974 ACM tournament in San Diego
and has been discussed in some detail by the authors of COKO [61].

Full-width searching

The difficult problems associated with forward pruning have encouraged
several programmers to employ a full-width search strategy. Both the
Northwestern group and the Russian group [2] develop game trees in
which all legal continuations are examined from each node out to a fixed
depth. This full-width search is supplemented at the terminal nodes by a
narrow search of potential exchange sequences and a few checking moves.
The obvious weakness of this strategy is that deep searches are not possible.
Berliner [12] has discussed the blunders that inevitably accompany shallow
searching. Two of the most common problems are the absence of long-range
planning and a special phenomenon Berliner has labeled the “horizon
effect.”

These problems can be demonstrated by reference to Figure 3.7, which
is a slight variation of Figure 1.10 of Berliner’s thesis [12]. In this
position, with White to move, there is a clear and obvious win that even
a chess novice can recognize after a moment’s thought and a bit of counting.
The White rook pawn is closer (in moves) to its promotion square than
the Black king and its advance cannot be impeded in any way.

73

3: An introduction to computer chess

Figure 3.7 White to move and win.

This observation, however, involves long-range planning (being aware
that pawn promotion is desirable and that this goal is highly relevant to
the present situation) as well as some dynamic computations to determine
if the desired goal can be attained. Unfortunately for the machine, a
shallow search recognizes only those outcomes that exist within the search
horizon so that the promotion of the pawn is not discovered until the
event becomes part of the game tree.

On the basis of a static analysis of this position, the machine notes that
Black has three pawns and White has only two and thus assumes that
Black has the advantage. If the machine were White and were offered a
draw, it would readily accept even though this would be utter folly. Static
evaluation can be very misleading. W

To get a clear idea of the problem, let us analyze Figure 3.7 by having
the Northwestern program (CHESS 4.4) conduct a full-width search on
this position using the o—8 minimax strategy. With a 3-ply search, the
machine (Control Data Corporation 6400) examines 148 nodes in the
game tree in 0.3 seconds and selects a principal variation of (1) P-N4,
P-B4; (2) P-R4. Based on this 3-ply search, the machine evaluates the
position as favorable to black with a rating of —107 (a pawn is worth 100
and the minus sign indicates that Black has the advantage). Obviously,
the machine “misunderstands” the position since the correct move is P-R4
and White has a clear win.

By deepening the search, we can attempt to enlighten the machine. With
a 5-ply search, the computer examines 990 nodes in 2.1 seconds and
selects a principal variation of (1) P-N4, P-B4; (2) P-R4, P-N4; (3)
K-B2. The machine is still blind to the promotion opportunity and now
evaluates the position at —115. The selected first move, P-N4, could easily
lose the game to a competent opponent.

With a 7-ply search, the computer examines 4523 nodes in 8.6 seconds
and selects a principal variation of (1) P-N4, P-B4; (2) P-R4, P-N4;
(3) K-B2, P-R4; (4) K-N3. The evaluation function now is set at —116.
The machine is still totally blind to its clear opportunity. With a 9-ply

74

Full-width searching

search, the machine finally discovers the clear advantage of pushing its
rook pawn. This occurs because a 9-ply search involves 5 moves for
White and the pawn can reach the eighth rank in 5 moves. In conducting
this search, however, the machine makes use of the “horizon effect” to
delay the pawn promotion. In the 9-ply search, the computer examines
48,273 nodes in 96.5 seconds and selects a principal variation of (1)
P-R4, P-R4; (2) P-RS, P-RS; (3) P-R6, P-R6; (4) P-R7, P-R7+;
(5) KxP. Its evaluation function improves by about 100 points since it
believes that it can win a pawn. In fact, the machine selects P-R4 because
it anticipates that this move will lead to a pawn capture! It does not under-
stand that Black’s sacrifice of a pawn does not prevent the ultimate promo-
tion of White’s rook pawn. Since the pawn sacrifice “pushes” the pawn
promotion over the machine’s horizon (i.e., beyond 9-plies) the computer
assumes that the promotion has been permanently prevented. This
ridiculous strategy of self-delusion plagues the machine in many different
environments. '

The position in Figure 3.7 demonstrates several major weaknesses of a
full-width shallow search. The machine’s evaluation indicating that Black
has the advantage shows why a static evaluation emphasizing material is a
poor substitute for a dynamic analysis of the position. Secondly, the pawn
sacrifice by Black indicates the foolish behavior which is engendered by
the horizon effect. Thirdly, the absence of long-range planning becomes
painfully evident when the machine copes with this position by examining
48,273 positions in 96 seconds (at a million operations per second) in-
stead of simply counting squares. At the end of all this labor, the
computer picks the right move for the wrong reason. The machine would
need an 11-ply search in order to select the right move for the right
reason. Clearly, a conventional full-width search is not the right approach
for positions such as the one in Figure 3.7.

The problem with long-range planning becomes painfully evident when
a machine competes against a human. In the simultaneous exhibition be-
tween David Levy and twelve different machines (Minneapolis, October,
1975), CHESS 4.4 as White walked into a devastating mating attack
developed by Levy over a sequence of many moves (see Figure 1.15).
Levy, taking advantage of the weakened king side after Bird’s Opening,
carefully positioned his queen [(7) ... Q-B2], his king bishop [(10) . ..
B-Q3], and both knights [(2) . .. N-KB3 and (9) ... NxP/K4] to bear
down on the hapless White King.

Because it has no long-range planning, the machine had considerable
difficulty “understanding” the purpose of Levy’s opening strategy nor did
it anticipate the piece sacrifices. From the machines perspective, these
sacrifices involve the loss of material by Black without any immediate
compensation. Without even a vague idea of Levy’s long-range plan, the
machine was quite happy to accept the material and thereby increment its
evaluation function. After castling king-side, the machine had to take steps
to thwart Black’s attack. It made a fatal mistake with (10) B-K2, re-

75

3: An introduction to computer chess

treating the bishop to avoid losing the minor exchange. It could not
afford this lost tempo because a developing move such as (10) N-QB3
was essential. The machine, however, lacking a long-range planning facility,
had no idea that defensive maneuvers were necessary.

The “horizon effect” that appeared with the 9-ply search in the previous
end-game example can also cause much more malevolent effects. Berliner
has provided a clear example of one such disastrous situation in Figure
1.3 of his thesis [12]. Figure 3.8 presents this position with White to move.
White’s white-squared bishop is trapped and cannot be saved. Therefore
White’s strategy should be to get as much as possible for the bishop. The
problem for the machine, however, is that the bishop capture can be
delayed by sacrificing material worth less than the bishop. If these material
sacrifices can push the eventual capture of the bishop over the search
horizon, the machine will “ believe” that it has saved the bishop.

Let us examine the way in which the Northwestern program deals with
this position. With a 2-ply search, it examines 211 nodes in 0.6 seconds
and selects a principal variation of (1) B-QN3, P—QBS5. It’s evaluation
is 247 since it has a bishop advantage. It does not realize that the bishop
is trapped because its 2-ply search examined only those capture sequences
which might be initiated by White at the end of the principal variation.
With a 3-ply search, it discovers that B-QN3 does not work and then
“invents” a foolish plan to save the bishop. It examines 1137 nodes in
3.4 seconds and decides that (1) P-K5, PxP; (2) N-QS is its best strategy
even though its evaluation function decreases to 176. The machine ob-
serves that if (2) . .. PxB, then (3) NxB+ or if (2) ... NxN, then (3)
RxN, PxB; (4) RxB. In each case, the machine’s analysis past the third
ply is based only on a direct sequence of captures. The problem here is
that the machine’s tactics merely delay the loss of the bishop by sacrificing
an additional pawn and giving up a positional advantage. The machine
fails to understand this position until it conducts a 6-ply search, examining
168,774 nodes in 442 seconds. At this depth, it selects a more promising
principle variation of (1) B/2xP, PxB/5; (2) P-K5, N-R4; (3) PxP,

Figure 3.8 White to move [from
Berliner (12)].

76

The opening

B-KN4. With this variation, White exchanges the bishop for two pawns
and maintains a positional advantage.

Another instance of the horizon effect occurred at the 1975 ACM com-
puter chess tournament in Minneapolis. CHESS 4.4 (White) and TREE
FROG (Black) competed in the fourth round for the championship (see
Figure 1.13). With its twelfth move, White placed a pawn on the seventh
rank. Because CHESS 4.4 places a high value on a pawn in this position,
it was unwilling to give up the pawn without a battle. Unfortunately for
CHESS 4.4, it could not find a viable plan to save the pawn, so it used
the horizon effect to engage in a bit of self-deception. Its next few moves
served to delay the eventual capture of the pawn. The move, (13) P-KR3,
provided a delay by forcing Black’s queen bishop to retreat as did the
move, (14) P-QR3, forcing Black’s king bishop to move. The next move,
(15) P-KN4, maintained this delay strategy by continuing these harassing
tactics. Each of these moves served to delay Black’s capture of the White
pawn on the seventh rank and thus “successfully” pushed this capture
beyond the search horizon. The price that CHESS 4.4 paid for this folly
was that the positional advantage it had gained through its first twelve
moves was virtually dissipated and its pawn structure on the king side
was seriously weakened. Not until Black captured the aspiring pawn on
(19) .. . RxP did CHESS 4.4 resume its usual solid game. The partisan
observers from Northwestern gave a collective sign of relief when the
pawn finally succumbed to the Black rook.

The horizon effect can lead to the meaningless sacrifice of material and
the loss of positional advantage when the machine would otherwise have
an excellent game. If a rook or queen becomes trapped and cannot be
saved, the horizon effect will encourage the machine to offer up an endless
procession of pawns and minor pieces to delay the eventual capture. In this
instance, a tree search of 9 or 10 plies (not presently possible in the
middle-game) might not find the correct continuation. This problem can
only be solved by having the program terminate its search at each node
only when the position is truly quiescent. Thus it is clearly necessary to
improve the machine’s ability to discriminate between active and non-
active nodes.

The opening

The look-ahead procedure is relatively weak for selecting good moves in
the opening. The opening emphasizes the development of pieces to squares
where they can effectively do battle some 20 or 30 plies later. Since these
future battles are beyond the machine’s look-ahead horizon, it must develop
its pieces purely on heuristic grounds (e.g., control the center, knights
before bishops, prepare castling, etc.). Because these rules of thumb often
lead to imprecise play, many programmers have decided to use a common
human strategy, i.e., memorize many of the standard openings and play
them by rote. The computer can easily be programmed to play “book”

77

3: An introduction to computer chess

openings. There is no reason, other than the work involved, why a machine
could not have an opening library which covered as many as 100,000
positions. Most tournament programs now have between 3000 and 10,000
positions in their libraries.

Since moves can be accessed from this library very quickly, machines
play the opening at blinding speed and it is often difficult for human
observers to move the pieces about the board fast enough to keep up with
the play. A library of openings not only insures the machine a decent
level of performance in the early going but also conserves valuable clock
time for the middle game where some lengthy calculations may be neces-
sary. In science, however, we have a law (called Murphy’s law) which
states that if something can go wrong, it will and in a way which will
cause the most damage. Sadly enough, this principle applies with a
vengeance to computer play with a memorized opening library.

Sooner or later, regardless of the size of the library, the machine will
exhaust its ‘store of predigested moves and will have to think (e,
calculate) on its own. The problem arising is that the board position it
encounters when leaving its opening library is not of its own making. The
grandmaster’s “plan” or “idea” in selecting the opening moves is not
available to the machine so that it must rely upon its own static evaluation
function to determine whether its pieces are in their “proper” positions.
Of course, the machine decides that they are not because its evaluation
function is much less sophisticated than that of a grandmaster. The end
result is that the machine devotes its first several moves to rearranging its
pieces into a new configuration more compatible with its evaluation func-
tion. In doing this, it usually loses several tempos and often gets itself into
an inferior position. It is interesting that the machine’s failing in this regard
is not that dissimilar to the difficulty that some novice players have when
they laboriously memorize book after book of openings without learning
the theme or idea behind each opening.

It is probably unrealistic to expect that computer chess will be played
without a library of openings. If improvements do occur in opening play,
therefore, they will probably result from organizing the library to store more
than just a sequence of moves. For each position the library should catalog
both a move and thematic information concerning the type of strategy
which is appropriate to this position. This could be done by giving the
library the capability of modifying the static evaluation function when the
machine leaves the library. The modified function might encourage the
movement of certain pieces to particular squares or to control certain
squares. Even minor revisions along these lines would produce a major
improvement in machine play during the late opening and during the early
middle game. Since the machine must survive the opening and the middle
game in order to reach the end game without a lost position, it is probably
appropriate to devote considerable effort to this problem.

An interim solution which has been adopted by most tournament chess-
programming teams is to carefully select “book” openings compatible with

78

Improvement through competition

their machine’s style of play. If the machine’s evaluation function empha-
sizes material rather than positional factors, the program will appear
strongest in tactical positions. Thus the programmers can select library
moves that quickly lead to active positions. If the evaluation function
carefully considers pawn structure, the opening library can be structured to
produce positions which permit pawn doubling or pawn isolation. Consider-
able skill is required to artfully select those openings which make the
most of the machine’s playing style.

The end game

Levy [67] and other observers have felt that the end game is the most
difficult problem for machine chess. The end game requires highly special-
ized knowledge that is used relatively infrequently. The winning plan may
involve an exact sequence of 20 or more moves. A full-width search to
this depth is totally impossible. For this reason, it may be necessary to
abandon the «—f minimax procedure in the end game and adopt an
alternate strategy.

One promising plan is to structure the heuristic band-width search (see
Chapter 7) to examine only those portions of the game tree relevant to
some specific goal, such as pawn promotion. This strategy requires the
machine be able to recognize the beginning of the end game and then
determine which goals are feasible. The pattern recognition these decisions
require is not an easy problem for a machine but it is one that must be
solved if this approach is to be successful.

A second strategy is to analyze specific types of end games in some
detail and then to develop specific programs to deal with each of these
in an algorithmic fashion. Thus the machine will have a detailed set of
instructions for every position it might encounter in a king and rook versus
king ending or a king and pawn versus king ending. This approach is
discussed in detail in Chapter 5. If this strategy can be generalized to more
complex end games, it may provide a partial solution to this problem.

Improvement through competition

One of the advantages of research on machine intelligence in a chess en-
vironment is that new ideas, once implemented, can be easily evaluated
in tournament play. Academicians have many ideas that persist in the
literature simply because their truth or falsity can not be easily tested. This
is unfortunate because it slows the pace of progress. Chess programming
has the advantage that new ideas can be implemented and tested within a
period of a few weeks. Several innovations in Northwestern’s program
were tested in a few early morning sessions simply by playing the new
version of the program against the old version and noting the outcomes.
The annual computer chess tournaments held by the Association for
Computing Machinery provide a national testing ground for chess pro-

79

3: An introduction to computer chess

grammers. This annual competition is useful for uncovering the important
weaknesses which most programs inevitably have. It is true that these
tournaments are expensive but their value could be maintained by re-
stricting each machine to 20 or 30 seconds per move.instead of 3 minutes.
A “blitz” tournament would still provide each programming team with an
opportunity to test their innovations but at a much reduced cost in machine
time and in long-distance telephone expenses. At the same time, the
audience enthusiasm that Mittman discusses in Chapter 1 would probably
be augmented because the games would proceed at an exciting pace.

Greenblatt [48] has avoided the ACM tournaments and has entered his
program exclusively in human tournaments. In addition to developing
a USCF rating for his program, this competition has provided a broader
test of the program’s skill then would be the case for machine tournaments.
Humans show much greater diversity in playing style than do present
computer programs and this characteristic may be an important aspect of
the testing environment. Tournament play against humans also provides
some special opportunities not present in machine tournaments. With
human opponents, the opening library can be used more effectively than
with machine opponents. With two machines, book-after-book of openings
can be read into each with neither gaining an advantage. With play against
a human, however, the enlargement of the machine’s library should have
beneficial results. Secondly, the human’s propensity for an occasional
blunder (such as inadvertently leaving a piece en prise) should work to
the machine’s advantage. Such events never occur in computer tourna-
ments. Thirdly, most human players are unaware of the common weak-
nesses of Shannon-type chess programs and thus would not be able to
capitalize so easily on these shortcomings. It is interesting that the North-
western program has competed very favorably in the few human tourna-
ments it has entered. Slate and Atkin have been surprised at the relatively
poor play exhibited by the machine’s opponents. It is often difficult for
humans to adjust to the machine’s unnatural style of play and many face it
with unjustified trepidation; their play suffers accordingly.

For example, CHESS 4.5 recently entered the Paul Masson American
Class Tournament in California (July, 1976). Playing on a large scale
Control Data Cyber 170 system, the program was matched against 5 human
opponents in the B section who had an average rating of 1735. The machine
won all five matches. This result was quite surprising because the program
at a conceptual level is clearly in the C class or below (see Hearst’s chapter
for a more thorough discussion of this). Apparently the machine’s abilities
to avoid miscalculation and to never miss an opportunity seem to provide
a certain amount of compensation for its conceptual inadequacies.

Future prospects

Chess, as a problem environment, is representative of a large class of
problems that machines have been unable to master. The “cycle time” for

80

Future prospects

the human brain is relatively slow (4 or 5 operations per second as com-
pared to several million per second for modern computers). Despite this,
humans clearly outclass machines as problem solvers. Through evolution,
man has developed specialized skills to compensate for the slow speed of
biological information processing. Two major developments are prominent
in this regard. One is the large degree of parallel processing that occurs
very early in the visual and auditory systems. This permits complex pattern
recognition, an essential ingredient in human problem solving. A second
important development is a sophisticated storage and retrieval mechanism
for accessing information. Machine representations of knowledge lack the
richness and semantic meaningfulness of human memory. The computer
needs to emulate the human brain in being able to recognize key features
of a position, to know which actions are appropriate to these features, and
to implement tactics that are thematic with an appropriate long-term
strategy. Developments in these areas are essential for “intelligent” machine
chess.

David Levy [67] has a bet with several academicians that no computer
chess program will be able to beat him by 1978. His prospects for winning
this bet are quite good considering that no present program has yet
attained even an expert level of play. Given the tremendously difficult
conceptual problems involved, Levy may even have an outside chance of
winning such a bet if the deadline were extended for another decade.

81

