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On the Nature of Theories: 

A Neurocomputational Perspective 

I. The Classical View of Theories 

Not long ago, we all knew what a theory was: it was a set of sentences or 
propositions, expressible in the first-order predicate calculus. And we had what 
seemed to be excellent reasons for that view. Surely any theory had to be statable. 
And after it had been fully stated, as a set of sentences, what residue remained? 
Furthermore, the sentential view made systematic sense of how theories could 
perform the primary business of theories, namely, prediction, explanation, and 
intertheoretic reduction. It was basically a matter of first-order deduction from 
the sentences of the theory conjoined with relevant premises about the domain at 
hand. 

Equally important, the sentential view promised an account of the nature of 
learning, and ofrationality. Required was a set of formal rules to dictate appropri­
ate changes or updates in the overall set of believed sentences as a function of 
new beliefs supplied by observation. Of course there was substantial disagree­
ment about which rules were appropriate. Inductivists, falsificationists, 
hypothetico-deductivists, and Bayesian subjectivists each proposed a different ac­
count of them. But the general approach seemed clearly correct. Rationality 
would be captured as the proper set of formal rules emerged from logical investi­
gation. 

Finally, if theories are just sentences, then the ultimate virtue of a theory is 
truth. And it was widely expected that an adequate account of rational methodol-
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ogy would reveal why humans must tend, in the long run, toward theories that 
are true. 

Hardly anyone will now deny that there are serious problems with every ele­
ment of the preceding picture-difficulties we shall discuss below. Yet the 
majority of the profession is not yet willing to regard them as fatal. I profess my­
self among the minority that does so regard them. In urging the poverty of 'sen­
tential epistemologies' for over a decade now (Churchland 1975, 1979, 1981, 
1986), I have been motivated primarily by the pattern of the failures displayed 
by that approach. Those failures suggest to me that what is defective in the classi­
cal approach is its fundamental assumption that languagelike structures of some 
kind constitute the basic or most important form of representation in cognitive 
creatures, and the correlative assumption that cognition consists in the manipula­
tion of those representations by means of structure-sensitive rules. 

To be sure, not everyone saw the same pattern of failure, nor were they pre­
pared to draw such a strong conclusion even if they did. For any research pro­
gram has difficulties, and so long as we lack a comparably compelling alternative 
conception of representation and computation, it may be best to stick with the fa­
miliar research program of sentences and rules for their manipulation. 

However, it is no longer true that we lack a comparably compelling alternative 
approach. Within the last five years, there have been some striking theoretical de­
velopments and experimental results within cognitive neurobiology and 'connec­
tionist' AI (artificial intelligence). These have provided us with a powerful and 
fertile framework with which to address problems of cognition, a framework that 
owes nothing to the sentential paradigm of the classical view. My main purpose 
in this essay is to make the rudiments of that framework available to a wider au­
dience, and to explore its far-reaching consequences for traditional issues in the 
philosophy of science. Before turning to this task, let me prepare the stage by 
briefly summarizing the principal failures of the classical view, and the most 
prominent responses to them. 

II. Problems and Alternative Approaches 

The depiction of learning as the rule-governed updating of a system of sen­
tences or propositional attitudes encountered a wide range of failures. For 
starters, even the best of the rules proposed failed to reproduce reliably our 
preanalytic judgments of credibility, even in the artificially restricted or 'toy' situ­
ations in which they were asked to function. Paradoxes of confirmation plagued 
the H-D accounts (Hempel 1965; Scheffler 1963). The indeterminacy of falsifica­
tion plagued the Popperian accounts (Lakatos 1970; Feyerabend 1970; Church­
land 1975). Laws were assigned negligible credibility on Carnapian accounts 
(Salmon, 1966). Bayesian accounts, like Carnapian ones, presupposed a given 
probability space as the epistemic playground within which learning takes place, 
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and they could not account for the rationality of major shifts from one probability 
space to another, which is what the most interesting and important cases oflearn­
ing amount to. The rationality of large-scale conceptual change, accordingly, 
seemed beyond the reach of such approaches. Furthermore, simplicity emerged 
as a major determinant of theoretical credibility on most accounts, but none of 
them could provide an adequate definition of simplicity in syntactic terms, or give 
a convincing explanation of why it was relevant to truth or credibility in any case. 
One could begin to question whether the basic factors relevant to learning were 
to be found at the linguistic level at all. 

Beyond these annoyances, the initial resources ascribed to a learning subject 
by the sentential approach plainly presupposed the successful completion of a 
good deal of sophisticated learning on the part of that subject already. For ex­
ample, reliable observation judgments do not just appear out of nowhere. Living 
subjects have to learn to make the complex perceptual discriminations that make 
perceptual judgments possible. And they also have to learn the linguistic or 
propositional system within which their beliefs are to be constituted. Plainly, both 
cases of learning will have to involve some procedure quite distinct from that of 
the classical account. For that account presupposes antecedent possession of both 
a determinate propositional system and a capacity for determinate perceptual 
judgment, which is precisely what, prior to extensive learning, the human infant 
lacks. Accordingly, the classical story cannot possibly account for all cases of 
learning. There must exist a type of learning that is prior to and more basic than 
the process of sentence manipulation at issue. 

Thus are we led rather swiftly to the idea that there is a level of representation 
beneath the level of the sentential or propositional attitudes, and to the correlative 
idea that there is a learning dynamic that operates primarily on sublinguistic fac­
tors. This idea is reinforced by reflection on the problem of cognition and learning 
in nonhuman animals, none of which appear to have the benefit of language, ei­
ther the external speech or the internal structures, but all of which engage in 
sophisticated cognition. Perhaps their cognition proceeds entirely without benefit 
of any system for processing sentencelike representations. 

Even in the human case, the depiction of one's knowledge as an immense set 
of individually stored 'sentences' raises a severe problem concerning the relevant 
retrieval or application of those internal representations. How is it one is able to 
retrieve, from the millions of sentences stored, exactly the handful that is relevant 
to one's current predictive or explanatory problem, and how is it one is generally 
able to do this in a few tenths of a second? This is known as the "Frame Problem" 
in Al, and it arises because, from the point of view of fast and relevant retrieval, 
a long list of sentences is an appallingly inefficient way to store information. And 
the more information a creature has, the worse its application problem becomes. 

A further problem with the classical view oflearning is that it finds no essential 
connection whatever between the learning of facts and the learning of skills. This 
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is a problem in itself, since one might have hoped for a unified account of learn­
ing, but it is doubly a problem when one realizes that so much of the business 
of understanding a theory and being a scientist is a matter of the skills one has 
acquired. Memorizing a set of sentences is not remotely sufficient: one must learn 
to recognize the often quite various instances of the terms they contain; one must 
learn to manipulate the peculiar formalism in which they may be embedded; one 
must learn to apply the formalism to novel situations; one must learn to control 
the instruments that typically produce or monitor the phenomena at issue. As T. 
S. Kuhn first made clear (Kuhn 1962), these dimensions of the scientific trade are 
only artificially separable from one's understanding of its current theories. It be­
gins to appear that even if we do harbor internal sentences, they capture only a 
small part of human knowledge. 

These failures of the classical view over the full range of learning, both in hu­
mans and in nonhuman animals, are the more suspicious given the classical view's 
total disconnection from any theory concerning the structure of the biological 
brain, and the manner in which it might implement the kind of representations 
and computations proposed. Making acceptable contact with neurophysiological 
theory is a long-term constraint on any epistemology: a scheme of representation 
and computation that cannot be implemented in the machinery of the human brain 
cannot be an adequate account of human cognitive activities. 

The situation on this score used to be much better than it now is: it was clear 
that the classical account of representation and learning could easily be realized 
in typical digital computers, and it was thought that the human brain would turn 
out to be relevantly like a digital computer. But quite aside from the fact that com­
puter implementations of sentential learning chronically produced disappointing 
results, it has become increasingly clear that the brain is organized along com­
putational lines radically different from those employed in conventional digital 
computers. The brain, as we shall see below, is a massively parallel processor, 
and it performs computational tasks of the classical kind at issue only very slowly 
and comparatively badly. To speak loosely, it does not appear to be designed to 
perform the tasks the classical view assigns to it. 

I conclude this survey by returning to specifically philosophical matters. A 
final problem with the classical approach has been the failure of all attempts to 
explain why the learning process must tend, at least in the long run, to lead us 
toward true theories. Surprisingly, and perhaps distressingly, this Panglossean 
hope has proved very resistant to vindication (Van Fraassen 1980; Laudan 1981). 
Although the history of human intellectual endeavor does support the view that, 
over the centuries, our theories have become dramatically better in many dimen­
sions, it is quite problematic whether they are successively 'closer' to 'truth'. In­
deed, the notion of truth itself has recently come in for critical scrutiny (Putnam 
1981; Churchland 1985; Stich 1990). It is no longer clear that there is any unique 
and unitary relation that virtuous belief systems must bear to the nonlinguistic 
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world. Which leaves us free to reconsider the great many different dimensions 
of epistemic and pragmatic virtue that a cognitive system can display. 

The problems of the preceding pages have not usually been presented in con­
cert, and they are not usually regarded as conveying a unitary lesson. A few phil­
osophers, however, have been moved by them, or by some subset of them, to sug­
gest significant modifications in the classical framework. One approach that has 
captured some adherents is the 'semantic view' of theories (Suppe 1974; Van 
Fraassen 1980; Giere 1988). This approach attempts to drive a wedge between 
a theory and its possibly quite various linguistic formulations by characterizing 
a theory as a set of models, those that will make a first-order linguistic statement 
of the theory come out true under the relevant assignments. The models in the 
set all share a common abstract structure, and that structure is what is important 
about any theory, according to the semantic view, not any of its idiosyncratic lin­
guistic expressions. A theory is true, on this view, just in case it includes the ac­
tual world, or some part of it, as one of the models in the set. 

This view buys us some advantages, perhaps, but I find it to be a relatively 
narrow response to the panoply of problems addressed above. In particular, I 
think it strange that we should be asked, at this stage of the debate, to embrace 
an account of theories that has absolutely nothing to do with the question of how 
real physical systems might embody representations of the world, and how they 
might execute principled computations on those representations in such a fashion 
as to learn. Prima facie, at least, the semantic approach takes theories even farther 
into Plato's Heaven, and away from the buzzing brains that use them, than did 
the view that a theory is a set of sentences. This complaint does not do justice 
to the positive virtues of the semantic approach (see especially Giere, whose ver­
sion does make some contact with current cognitive psychology). But it is clear 
that the semantic approach is a response to only a small subset of the extant 
difficulties. 

A more celebrated response is embodied in Kuhn's The Structure of Scientific 
Revolutions (1962). Kuhn centers our attention not on sets of sentences, nor on 
sets of models, but on what he calls paradigms or exemplars, which are specific 
applications of our conceptual, mathematical, and instrumental resources. 
Mastering a theory, on this view, is more a matter of being able to perform in 
various ways, of being able to solve a certain class of problems, of being able 
to recognize diverse situations as relevantly similar to that of the original or 
paradigmatic application. Kuhn's view brings to the fore the historical, the socio­
logical, and the psychological factors that structure our theoretical cognition. Of 
central importance is the manner in which one comes to perceive the world as 
one internalizes a theory. The perceptual world is redivided into new categories, 
and while the theory may be able to provide necessary and sufficient conditions 
for being an instance of any of its categories, the perceptual recognition of any 
instance of a category does not generally proceed by reference to those condi-



64 Paul M. Church/and 

tions, which often transcend perceptual experience. Rather, perceptual recogni­
tion proceeds by some inarticulable process that registers similarity to one or 
more perceptual prototypes of the category at issue. The recognition of new appli­
cations of the apparatus of the entire theory displays a similar dynamic. In all, 
a successful theory provides a prototypical beachhead that one attempts to expand 
by analogical extensions to new domains. 

Reaction to this view has been deeply divided. Some applaud Kuhn's move to­
ward naturalism, toward a performance conception of knowledge, and away from 
the notion of truth as the guiding compass of cognitive activity (Munevar 1981; 
Stich 1990). Others deplore his neglect of normative issues, his instrumentalism 
and relativism, and his alleged exaggeration of certain lessons from perceptual 
and developmental psychology (Fodor 1984). We shall address these issues later 
in the paper. 

A third and less visible reaction to the classical difficulties has simply rejected 
the sentential or propositional attitudes as the most important form of representa­
tion used by cognitive creatures, and has insisted on the necessity of empirical 
and theoretical research into brain function in order to answer the question of 
what are the most important forms of representation and computation within cog­
nitive creatures. Early statements can be found in Churchland 1975 and Hooker 
1975; extended arguments appear in Churchland 1979 and 1981; and further ar­
guments appear in Churchland, P.S., 1980 and 1986, and in Hooker 1987. 

While the antisentential diagnosis could be given some considerable support, 
as the opening summary of this section illustrates, neuroscience as the recom­
mended cure was always more difficult to sell, given the functional opacity of the 
biological brain. Recently, however, this has changed dramatically. We now 
have some provisional insight into the functional significance of the brain's 
microstructure, and some idea of how it represents and computes. What has been 
discovered so far appears to vindicate the claims of philosophical relevance and 
the expectations of fertility in this area, and it appears to vindicate some central 
elements in Kuhn's perspective as well. This neurofunctional framework 
promises to sustain wholly new directions of cognitive research. In the sections 
to follow I shall try to outline the elements of this framework and its applications 
to some familiar problems in the philosophy of science. I begin with the physical 
structure and the basic activities of the brainlike systems at issue. 

III. Elementary Brainlike Networks 

The functional atoms of the brain are cells called neurons (figure 1). These 
have a natural or default level of activity that can, however, be modulated up or 
down by external influences. From each neuron there extends a long, thin output 
fiber called an axon, which typically branches at the far end so as to make a large 
number of synaptic connections with either the central cell body or the bushy den-
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drites of other neurons. Each neuron thus receives inputs from a great many other 
neurons, which inputs tend to excite (or to inhibit, depending on the type of syn­
aptic connection) its normal or default level of activation. The level of activation 
induced is a function of the number of connections, of their size or weight, of their 
polarity (stimulatory or inhibitory), and of the strength of the incoming signals. 
Furthermore, each neuron is constantly emitting an output signal along its own 
axon, a signal whose strength is a direct function of the overall level of activation 
in the originating cell body. That signal is a train of pulses or spikes, as they are 
called, which are propagated swiftly along the axon. A typical cell can emit spikes 
along its axon at anything between zero and perhaps 200 Hz. Neurons, if you like, 
are humming to one another, in basso notes of varying frequency. 

The networks to be explored attempt to simulate natural neurons with artifical 
units of the kind depicted in figure 2. These units admit of various levels of activa­
tion, which we shall assume to vary between 0 and 1. Each unit receives input 
signals from other units via 'synaptic' connections of various weights and polari-
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ties. These are represented in the diagram as small end-plates of various sizes. 
For simplicity's sake, we dispense with dendritic trees: the axonal end branches 
from other units all make connections directly to the 'cell body' of the receiving 
unit. The total modulating effect E impacting on that unit is just the sum of the 
contributions made by each of the connections. The contribution of a single con­
nection is just the product of its weight Wi times the strength Si of the signal arriv­
ing at that connection. Let me emphasize that if for some reason the connection 
weights were to change over time, then the unit would receive a quite different 
level of overall excitation or inhibition in response to the very same configuration 
of input signals. 

Turn now to the output side of things. As a function of the total input E, the 
unit modulates its activity level and emits an output signal of a certain strength 
s0 along its 'axonal' output fiber. But s0 is not a direct or linear function of E. 
Rather, it is an $-shaped function as in figure 3. The reasons for this small 
wrinkle will emerge later. I mention it here because its inclusion completes the 
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story of the elementary units. Of their intrinsic properties, there is nothing left 
to tell. They are very simple indeed. 

It remains to arrange them into networks. In the brain, neurons frequently con­
situte a population, all of which send their axons to the site of a second population 
of neurons, where each arriving axon divides into terminal end branches in order 
to make synaptic connections with many different cells within the target popula­
tion. Axons from cells in this second population can then project to a third popula­
tion of cells, and so on. This is the inspiration for the arrangement of figure 4. 

The units in the bottom or input layer of the network may be thought of as 'sen­
sory' units, since the level of activation in each is directly determined by aspects 
of the environment (or perhaps by the experimenter, in the process of simulating 
some environmental input). The activation level of a given input unit is designed 
to be a response to a specific aspect or dimension of the overall input stimulus 
that strikes the bottom layer. The assembled set of simultaneous activation levels 
in all of the input units is the network's representation of the input stimulus. We 
may refer to that configuration of stimulation levels as the input vector, since it 
is just an ordered set of numbers or magnitudes. For example, a given stimulus 
might produce the vector (.5, .3, .9, .2). 

These input activation levels are then propagated upwards, via the output sig-
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nal in each unit's axon, to the middle layer of the network, to what are called the 
hidden units. As can be seen in figure 4, any unit in the input layer makes a synap­
tic connection of some weight or other with every unit at this intermediate layer. 
Each hidden unit is thus the target of several inputs, one for each cell at the input 
layer. The resulting activation level of a given hidden unit is essentially just the 
sum of all of the influences reaching it from the cells in the lower layer. 

The result of this upward propagation of the input vector is a set of activation 
levels across the three units in the hidden layer, called the hidden unit activation 
vector. The values of that three-element vector are strictly determined by 

(a) the makeup of the input vector at the input layer, and 
(b) the various values of the connection weights at the ends of the terminal 

branches of the input units. 

What this bottom half of the network does, evidently, is convert or transform one 
activation vector into another. 



ON THE NATURE OF THEORIES 69 

The top half of the network does exactly the same thing, in exactly the same 
way. The activation vector at the hidden layer is propagated upward to the output 
(topmost) layer of units, where an output vector is produced, whose character is 
determined by 

(a) the makeup of the activation vector at the hidden layer, and 
(b) the various values of the connection weights at the ends of the terminal 

branches of the hidden units. 

Looking now at the whole network, we can see that it is just a device for trans­
forming any given input-level activation vector into a uniquely corresponding 
output-level activation vector. And what determines the character of the global 
transformation effected is the peculiar set of values possessed by the many con­
nection weights. This much is easy to grasp. What is not so easy to grasp, prior 
to exploring examples, is just how very powerful and useful those transforma­
tions can be. So let us explore some real examples. 

IV. Representation and Learning in Brainlike Networks 

A great many of the environmental features to which humans respond are 
difficult to define or characterize in terms of their purely physical properties. 
Even something as mundane as being the vowel sound a, as in "rain," resists such 
characterization, for the range of acoustical variation among acceptable and 
recognizable as is enormous. A female child at two years and a basso male at fifty 
will produce quite different sorts of atmospheric excitations in pronouncing this 
vowel, but each sound will be easily recognized as an a by other members of the 
same linguistic culture. 

I do not mean to suggest that the matter is utterly intractable from a physical 
point of view, for an examination of the acoustical power spectrum of voiced 
vowels begins to reveal some of the similarities that unite as. And yet the analysis 
continues to resist a simple list of necessary and sufficient physical conditions on 
being an a. Instead, being an a seems to be a matter of being close enough to a 
typical a sound along a sufficient number of distinct dimensions of relevance, 
where each notion in italics remains difficult to characterize in a nonarbitrary 
way. Moreover, some of those dimensions are highly contextual. A sound type 
that would not normally be counted or recognized as an a when voiced in isolation 
may be unproblematically so counted if it regularly occurs, in someone's 
modestly accented speech, in all of the phonetic places that would normally be 
occupied by as. Evidently, what makes something an a is in part a matter of the 
entire linguistic surround. In this way do we very quickly ascend to the abstract 
and holistic level, for even the simplest of culturally embedded properties. 

What holds for phonemes holds also for a great many other important features 
recognizable by us-colors, faces, flowers, trees, animals, voices, smells, feel-
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ings, songs, words, meanings, and even metaphorical meanings. At the outset, 
the categories and resources of physics, and even neuroscience, look puny and 
impotent in the face of such subtlety. 

And yet it is a purely physical system that recognizes such intricacies. Short 
of appealing to magic, or of simply refusing to confront the problem at all, we 
must assume that some configuration of purely physical elements is capable of 
grasping and manipulating these features, and by means of purely physical prin­
ciples. Surprisingly, networks of the kind described in the preceding section have 
many of the properties needed to address precisely this problem. Let me explain. 

Suppose we are submarine engineers confronted with the problem of designing 
a sonar system that will distinguish between the sonar echoes returned from ex­
plosive mines, such as might lie on the bottom of sensitive waterways during war­
time, and the sonar echoes returned from rocks of comparable sizes that dot the 
same underwater landscapes. The difficulty is twofold: echoes from both objects 
sound indistinguishable to the casual ear, and echoes from each type show wide 
variation in sonic character, since both rocks and mines come in various sizes, 
shapes, and orientations relative to the probing sonar pulse. 

Enter the network of figure 5. This one has thirteen units at the input layer, 
since we need to code a fairly complex stimulus. A given sonar echo is run 
through a frequency analyzer, and is sampled for its relative energy levels at thir­
teen frequencies. These thirteen values, expressed as fractions of 1, are then en­
tered as activation levels in the respective units of the input layer, as indicated 
in figure 5. From here they are propagated through the network, being trans­
formed as they go, as explained earlier. The result is a pair of activation levels 
in the two units at the output layer. We need only two units here, for we want 
the network eventually to produce an output activation vector at or near ( 1, 0) 
when a mine echo is entered as input, and an output activation vector at or near 
( 0, 1) when a rock echo is entered as input. In a word, we want it to distinguish 
mines from rocks. 

It would of course be a miracle ifthe network made the desired discrimination 
immediately, since the connection weights that determine its transformational ac­
tivity are initially set at random values. At the beginning of this experiment then, 
the output vectors are sure to disappoint us. But we proceed to teach the network 
by means of the following procedure. 

We procure a large set ofrecorded samples of various (genuine) mine echoes, 
from mines of various sizes and orientations, and a comparable set of genuine 
rock echoes, keeping careful track of which is which. We then feed these echoes 
into the network, one by one, and observe the output vector produced in each 
case. What interests us in each case is the amount by which the actual output vec­
tor differs from what would have been the 'correct' vector, given the identity of 
the specific echo that produced it. The details of that error, for each element of 
the output vector, are then fed into a special rule that computes a set of small 
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changes in the values of the various synaptic weights in the system. The idea is 
to identify those weights most responsible for the error, and then to nudge their 
values in a direction that would at least reduce the amount by which the output 
vector is in error. The slighty modified system is then fed another echo from the 
training set, and the entire procedure is repeated. 

This provides the network with a 'teacher'. The process is called "training up 
the network," and it is standardly executed by an auxiliary computer programmed 
to feed samples from the training set into the network, monitor its responses, and 
adjust the weights according to the special rule after each trial. Under the pressure 
of such repeated corrections, the behavior of the network slowly converges on 
the behavior we desire. That is to say, after several thousands of presentations 
of recorded echoes and subsequent adjustments, the network starts to give the 
right answer close to 90 percent of the time. When fed a mine echo, it generally 
gives something close to a < 1, 0) output. And when fed a rock echo, it generally 
gives something close to a < 0, 1). 

A useful way to think of this is captured in figure 6. Think of an abstract space 
of many dimensions, one for each weight in the network (105 in this case), plus 
one dimension for representing the overall error of the output vector on any given 
trial. Any point in that space represents a unique configuration of weights, plus 
the performance error that that configuration produces. What the learning rule 
does is steadily nudge that configuration away from erroneous positions and to­
ward positions that are less erroneous. The system inches its way down an 'error 
gradient' toward a global error minimum. Once there, it responds reliably to the 
relevant kinds of echoes. It even responds well to echoes that are 'similar' to mine 
echoes, by giving output vectors that are closer to (1, 0) than to (0, 1). 

There was no guarantee the network would succeed in learning to discriminate 
the two kinds of echoes, because there was no guarantee that rock echoes and 
mine echoes would differ in any systematic or detectable way. But it turns out that 
mine echoes do indeed have some complex of relational or structural features that 
distinguishes them from rock echoes, and under the pressure of repeated error 
corrections, the network manages to lock onto, or become 'tuned' to, that subtle 
but distinctive weave of features. 

We can test whether it has truly succeeded in this by now feeding the network 
some mine and rock echoes not included in the training set, echoes it has never 
encountered before. In fact, the network does almost as well classifying the new 
echoes as it does with the samples in its training set. The 'knowledge' it has ac­
quired generalizes quite successfully to new cases. (This example is a highly sim­
plified account of some striking results from Gorman and Sejnowski 1988.) 

All of this is modestly amazing, because the problem is quite a difficult one, 
at least as difficult as learning to discriminate the phoneme a. Human sonar opera­
tors, during a long tour of submarine duty, eventually learn to distinguish the two 
kinds of echoes with some uncertain but nontrivial regularity. But they never per-
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form at the level of the artificial network. Spurred on by this success, work is cur­
rently underway to train up a network to distinguish the various phonemes charac­
teristic of English speech (Zipser and Elman 1988). The idea is to produce a 
speech-recognition system that will not be troubled by the acoustic idiosyncracies 
of diverse speakers, as existing speech-recognition systems are. 

The success of the mine/rock network is further intriguing because the 'knowl­
edge' the network has acquired, concerning the distinctive character of mine 
echoes, consists of nothing more than a carefully orchestrated set of connection 
weights. And it is finally intriguing because there exists a learning algorithm -the 
rule for adjusting the weights as a function of the error displayed in the output 
vector-that will eventually produce the required set of weights, given sufficient 
examples on which to train the network (Rumelhart et al. 1986). 

How can a set of connection weights possibly embody knowledge of the 
desired distinction? Think of it in the following way. Each of the thirteen input 
units represents one aspect or dimension of the incoming stimulus. Collectively, 
they give a simultaneous profile of the input echo along thirteen distinct dimen-
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sions. Now perhaps there is only one profile that is roughly characteristic of mine 
echoes; or perhaps there are many different profiles, united by a common rela­
tional feature (e.g., that the activation value of unit #6 is always three times the 
value ofunit #12); or perhaps there is a disjunctive set of such relational features; 
and so forth. In each case, it is possible to rig the weights so that the system will 
respond in a typical fashion, at the output layer, to all and only the relevant 
profiles. 

The units at the hidden layer are very important in this. If we consider the ab­
stract space whose seven axes represent the possible activation levels of each of 
the seven hidden units, then what the system is searching for during the training 
period is a set of weights that partitions this space so that any mine input produces 
an activation vector across the hidden units that falls somewhere within one large 
subvolume of this abstract space, while any rock input produces a vector that falls 
somewhere into the complement of that subvolume (figure 7). The job of the top 
half of the network is then the relatively easy one of distinguishing these two 
subvolumes into which the abstract space has been divided. 

Vectors near the center of (or along a certain path in) the mine-vector sub­
volume represent prototypical mine echoes, and these will produce an output vec­
tor very close to the desired ( 1, 0). Vectors nearer to the surface (strictly speak­
ing, the hypersurface) that partitions the abstract space represent atypical or 
problematic mine echoes, and these produce more ambiguous output vectors such 
as ( .6, .4). The network's discriminative responses are thus graded responses: 
the system is sensitive to similarities along all of the relevant dimensions, and es­
pecially to rough conjunctions of these subordinate similarities. 

So we have a system that learns to discriminate hard-to-define perceptual fea­
tures, and to be sensitive to similarities of a comparably diffuse but highly rele­
vant character. And once the network is trained up, the recognitional task takes 
only a split second, since the system processes the input stimulus in parallel. It 
finally gives us a discriminatory system that performs something like a living 
creature, both in its speed and in its overall character. 

I have explained this system in some detail, so that the reader will have a clear 
idea of how things work in at least one case. But the network described is only 
one instance of a general technique that works well in a large variety of cases. 
Networks can be constructed with a larger number of units at the output layer, 
so as to be able to express not just two, but a large number of distinct discrimi­
nations. 

One network, aptly called NETtalk by its authors (Rosenberg and Sejnowski 
1987), takes vector codings for seven-letter segments of printed words as inputs, 
and gives vector codings for phonemes as outputs. These output vectors can be 
fed directly into a sound synthesizer as they occur, to produce audible sounds. 
What this network learns to do is to transform printed words into audible speech. 
Though it involves no understanding of the words that it 'reads', the network's feat 
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is still very impressive, because it was given no rules whatever concerning the 
phonetic significance of standard English spelling. It began its training period by 
producing a stream of unintelligible babble in response to text entered as input. 
But in the course of many thousands of word presentations, and under the steady 
pressure of the weight-nudging algorithm, the set of weights slowly meanders its 
way to a configuration that reduces the measured error close to zero. After such 
training it will then produce as output, given arbitrary English text as input, per­
fectly intelligible speech with only rare and minor errors. 

This case is significant for a number of reasons. First, the trained network 
makes a large number of discriminations (79, in fact), not just a binary one. Sec­
ond, it contains no explicit representation of any rules, however much it might 
seem to be following a set of rules. Third, it has mastered an input/output trans­
formation that is notoriously irregular, and it must be sensitive to lexical context 
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in order to do so. (Specifically, the phoneme it assigns to the center or focal letter 
of its seven-letter input is in large part a function of the identity of the three letters 
on either side.) And fourth, it portrays some aspects of a 'sensorimotor' skill, 
rather than a purely sensory skill: it is producing highly complex behavior. 

NETtalk has some limitations, of course. Pronunciations that depend on spe­
cifically semantical or grammatical distinctions will generally elude its grasp (un­
less they happen to be reflected in some way in the corpus of its training words, 
as occasionally they are), since NETtalk knows neither meanings nor syntax. But 
such dependencies affect only a very small percentage of the transformations ap­
propriate to any text, and they are in any case to be expected. To overcome them 
completely would require a network that actually understands the text being read. 
And even then mistakes would occur, for even humans occasionally misread 
words as a result of grammatical or semantical confusion. What is arresting about 
NETtalk is just how very much of the complex and irregular business of text­
based pronu~ciation can be mastered by a simple network with only a few 
hundred neuronlike units. 

Another rather large network (by Lehky and Sejnowski 1988a, 1988b) ad­
dresses problems in vision. It takes codings for smoothly varying gray-!)cale pic­
tures as input, and after training it yields as outputs surprisingly accurate codings 
for the curvatures and orientations of the physical objects portrayed in the pic­
tures. It solves a form of the 'shape from shading' problem long familiar to the­
orists in the field of vision. This network is of special interest because a subse­
quent examination of the 'receptive fields' of the trained hidden units ,ghows them 
to have acquired some of the same response properties as are displayed by cells 
in the visual cortex of mature animals. Specifically, they show a maximum sensi­
tivity to spots, edges, and bars in specific orientations. This finding echoes the 
seminal work of Hubel and Wiesel (1962), in which cells in the visual cortex were 
discovered to have receptive fields of this same character. Results of this kind are 
very important, for if we are to take these artificial networks as models for how 
the brain works, then they must display realistic behavior not just at the macro­
level: they must also display realistic behavior at the microlevel. 

Enough examples. You have seen something of what networks of this kind can 
do, and of how they do it. In both respects they contrast sharply with the kinds 
of representational and processing strategies that philosophers of science, induc­
tive logicians, cognitive psychologists, and AI workers have traditionally 
ascribed to us (namely, sentencelike representations manipulated by formal 
rules). You can see also why this theoretical and experimental approach has cap­
tured the interest of those who seek to understand how the microarchitecture of 
the biological brain produces the phenomena displayed in human and animal cog­
nition. Let us now explore the functional properties of these networks in more 
detail, and see how they bear on some of the traditional issues in epistemology 
and the philosophy of science. 
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V. Some Functional Properties of Brainlike Networks 

The networks described above are descended from a device called the Percep­
tron (Rosenblatt 1959), which was essentially just a two-layer as opposed to a 
three~layer network. Devices of this configuration could and did learn to dis­
criminate a considerable variety of input patterns. Unfortunately, having the in­
put layer connected directly to the output layer imposes very severe limitations 
on the range of possible transformations a network can perform (Minsky and 
Papert 1969), and interest in Perceptron-like devices was soon eclipsed by the 
much faster-moving developments in standard 'program-writing' Al, which ex­
ploited the high-speed general-purpose digital machines that were then starting 
to become widely available. Throughout the seventies, research in artificial 
'neural nets' was an underground program by comparison. 

It has emerged from the shadows for a number of reasons. One important fac­
tor is just the troubled doldrums into which mainstream or program-writing AI 
has fallen. In many respects, these doldrums parallel the infertility of the classical 
approach to theories and learning within the philosophy of science. This is not 
surprising, since mainstream AI was proceeding on many of the same basic as­
sumptions about cognition, and many of its attempts were just machine im­
plementations of learning algorithms proposed earlier by philosophers of science 
and inductive logicians (Glymour 1987). The failures of mainstream AI­
unrealistic learning, poor performance in complex perceptual and motor tasks, 
weak handling of analogies, and snaillike cognitive performance despite the use 
of very large and fast machines - teach us even more dramatically than do the 
failures of mainstream philosophy that we need to rethink the style of representa­
tion and computation we have been ascribing to cognitive creatures. 

Other reasons for the resurgence of interest in networks are more positive. The 
introduction of additional layers of intervening or 'hidden' units produced a dra­
matic increase in the range of possible transformations that the network could 
effect. As Sejnowski et al. (1986) describe it: 

. . . only the first-order statistics of the input pattern can be captured by di­
rect connections between input and output units. The role of the hidden units 
is to capture higher-order statistical relationships and this can be accomplished 
if significant underlying features can be found that have strong, regular rela­
tionships with the patterns on the visible units. The hard part of learning is to 
find the set of weights which turn the hidden units into useful feature detectors. 

Equally important is the $-shaped, nonlinear response profile (figure 3) now as­
signed to every unit in the network. So long as this response profile remains lin­
ear, any network will be limited to computing purely linear transformations. (A 
transformationf(x) is linear just in casef(n • x) = n • f(x), andf(x + y) = f(x) 
+ f(y).) But a nonlinear response profile for each unit brings the entire range of 
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possible nonlinear transformations within reach of three-layer networks, a dra­
matic expansion of their computational potential. Now there are no transforma­
tions that lie beyond the computational power of a large enough and suitably 
weighted network. 

A third factor was the articulation, by Rumelhart, Hinton, and Williams 
(1986a), of the generalized delta rule (a generalization, to three-layer networks, 
ofRosenblatt's original teaching rule for adjusting the weights of the Perceptron), 
and the empirical discovery that this new rule very rarely got permanently stuck 
in inefficient 'local minima' on its way toward finding the best possible configura­
tion of connection weights for a given network and a given problem. This was 
a major breakthrough, not so much because "learning by the back-propagation of 
error," as it has come to be called, was just like human learning, but because it 
provided us with an efficient technology for quickly training up various networks 
on various problems, so that we could study their properties and explore their 
potential. 

The way the generalized delta rule works can be made fairly intuitive given 
the idea of an abstract weight space as represented in figure 6. Consider any out­
put vector produced by a network with a specific configuration of weights, a con­
figuration represented by a specific position in weight space. Suppose that this 
output vector is in error by various degrees in various of its elements. Consider 
now a single synapse at the ouput layer, and consider the effect on the output vec­
tor that a small positive or negative change in its weight would have had. Since 
the output vector is a determinate function of the system's weights (assuming we 
hold the input vector fixed), we can calculate which of these two possible 
changes, if either, would have made the greater improvement in the output vec­
tor. The relevant change is made accordingly. (For more detail, see Rumelhart 
et al. 1986b.) 

If a similar calculation is performed over every synapse in the network, and 
the change in its weight is then made accordingly, what the resulting shift in the 
position of the system's overall point in weight space amounts to is a small slide 
down the steepest face of the local 'error surface'. Note that there is no guarantee 
that this incremental shift moves the system directly towards the global position 
of zero error (that is why perfection cannot be achieved in a single jump). On the 
contrary, the descending path to a global error minimum may be highly circui­
tous. Nor is there any guarantee that the system must eventually reach such a 
global minimum. On the contrary, the downward path from a given starting point 
may well lead to a merely 'local' minimum, from which only a large change in 
the system's weights will afford escape, a change beyond the reach of the delta 
rule. But in fact this happens relatively rarely, for it turns out that the more dimen­
sions (synapses) a system has, the smaller the probability of there being an inter­
secting local minimum in every one of the available dimensions. The global point 
is usually able to slide down some narrow cleft in the local topography. Empiri-



ON THE NATURE OF THEORIES 79 

cally then, the back-propagation algorithm is surprisingly effective at driving the 
system to the global error minimum, at least where we can identify that global 
minimum effectively. 

The advantage this algorithm provides is easily appreciated. The possible 
combinations of weights in a network increases exponentially with the size of the 
network. Assuming conservatively that each weight admits of only ten possible 
values, the number of distinct positions in 'weight space' (i.e., the number of pos­
sible weight configurations) for the simple rock/mine network of figure 5 is al­
ready 10105 ! This space is far too large to explore efficiently without something 
like the generalized delta rule and the back-propagation of error to do it for us. 
But with the delta rule, administered by an auxiliary computer, researchers have 
shown that networks of the simple kind described are capable of learning some 
quite extraordinary skills, and of displaying some highly intriguing properties. 
Let me now return to an exploration of these. 

An important exploratory technique in cognitive and behavioral neuroscience 
is to record, with an implanted microelectrode, the electrical activity of a single 
neuron during cognition or behavior in the intact animal. This is relatively easy 
to do, and it does give us tantalizing bits of information about the cognitive sig­
nificance of neural activity (recall the results of Hubel and Wiesel mentioned 
earlier). Single-cell recordings give us only isolated bits of information, how­
ever, and what we would really like to monitor are the patterns of simultaneous 
neural activation across large numbers of cells in the same subsystem. Unfortu­
nately, effective techniques for simultaneous recording from large numbers of ad­
jacent cells are still in their infancy. The task is extremely difficult. 

By contrast, this task is extremely easy with the artificial networks we have 
been describing. If the network is real hardware, its units are far more accessible 
than the fragile and microscopic units of a living brain. And if the network is 
merely being simulated within a standard computer (as is usually the case), one 
can write the program so that the activation levels of any unit, or set of units, can 
be read out on command. Accordingly, once a network has been successfully 
trained up on some skill or other, one can then examine the collective behavior 
of its units during the exercise of that skill. 

We have already seen the results of one such analysis in the rock/mine net­
work. Once the weights have reached their optimum configuration, the activation 
vectors (i.e., the patterns of activation) at the hidden layer fall into two disjoint 
classes: the vector space is partitioned in two, as depicted schematically in figure 
7. But a mere binary discrimination is an atypically simple case. The reader NET­
talk, for example, partitions its hidden-unit vector space into fully seventy nine 
subspaces. The reason is simple. For each of the twenty six letters in the alphabet, 
there is at least one phoneme assigned to it, and for many letters there are several 
phonemes that might be signified, depending on the lexical context. As it hap­
pens, there are seventy nine distinct letter-to-phoneme associations to be learned 
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if one is to master the pronunciation of English spelling, and in the successfully 
trained network a distinct hidden-unit activation vector occurs when each of these 
seventy nine possible transformations is effected. 

In the case of the rock/mine network, we noted a similarity metric within each 
of its two hidden-unit subspaces. In the case of NETtalk, we also find a similarity 
metric, this time across the seventy nine functional hidden-unit vectors (by 'func­
tional vector', I mean a vector that corresponds to one of the seventy nine desired 
letter-to-phoneme transformations in the trained network). Rosenberg and 
Sejnowski (1987) did a 'cluster analysis' of these vectors in the trained network. 
Roughly, their procedure was as follows. They asked, for every functional vector 
in that space, what other such vector is closest to it? The answers yielded about 
thirty vector pairs. They then constructed a secondary vector for each such pair, 
by averaging the two original vectors, and asked, for every such secondary vec­
tor, what other secondary vector (or so far unpaired primary vector) is closest 
to it? This produced a smaller set of secondary-vector pairs, on which the averag­
ing procedure was repeated to produce a set of tertiary vectors. These were then 
paired in turn, and so forth. This procedure produces a hierarchy of groupings 
among the original transformations, and it comes to an end with a grand division 
of the seventy nine original vectors into two disjoint classes. 

As it happens, that deepest and most fundamental division within the hidden­
unit vector space corresponds to the division between the consonants and the 
vowels! Looking further into this hierarchy, into the consonant branch, for ex­
ample, we find that there are subdivisions into the principal consonant types, and 
that within these branches there are further subdivisions into the most similar con­
sonants. All of this is depicted in the tree diagram of figure 8. What the network 
has managed to recover, from its training set of several thousand English words, 
is the highly irregular phonological significance of standard English spelling, plus 
the hierarchical organization of the phonetic structure of English speech. 

Here we have a clear illustration of two things at once. The first lesson is the 
capacity of an activation-vector space to embody a rich and well-structured hier­
archy of categories, complete with a similarity metric embracing everything 
within it. And the second lesson is the capacity of such networks to embody 
representations of factors and patterns that are only partially or implicitly 
reflected in the corpus of inputs. Though I did not mention it earlier, the 
rock/mine network provides another example of this, in that the final partition 
made on its hidden-unit vector space corresponds in fact to the objective distinc­
tion between sonar targets made of metal and sonar targets made of nonmetal. 
That is the true uniformity that lies behind the apparently chaotic variety dis­
played in the inputs. 

It is briefly tempting to suggest that NETtalk has the concept of a 'hard c', for 
example, and that the rock/mine network has the concept of 'metal'. But this won't 
really do, since the vector-space representations at issue do not play a conceptual 
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or computational role remotely rich enough to merit their assimilation to specif­
ically human concepts. Nevertheless, it is plain that both networks have contrived 
a system of internal representations that truly corresponds to important distinc­
tions and structures in the outside world, structures that are not explicitly repre­
sented in the corpus of their sensory inputs. The value of those representations 
is that they and only they allow the networks to 'make sense' of their variegated 
and often noisy input corpus, in the sense that they and only they allow the net­
work to respond to those inputs in a fashion that systematically reduces the error 
messages to a trickle. These, I need hardly remind, are the functions typically 
ascribed to theories. 

What we are confronting here is a possible conception of 'knowledge' or 'un­
derstanding' that owes nothing to the sentential categories of current common 
sense. An individual's overall theory-of-the-world, we might venture, is not a 
large collection or a long list of stored symbolic items. Rather, it is a specific point 
in that individual's synaptic weight space. It is a configuration of connection 
weights, a configuration that partitions the system's activation-vector space(s) 
into useful divisions and subdivisions relative to the inputs typically fed the sys­
tem. 'Useful' here means 'tends to minimize the error messages'. 

A possible objection here points to the fact that differently weighted systems 
can produce the same, or at least roughly the same, partitions on their activation­
vector spaces. Accordingly, we might try to abstract from the idiosyncratic de­
tails of a system's connection weights, and identify its global theory directly with 
the set of partitions they produce within its activation-vector space. This would 
allow for differently weighted systems to have the same theory. 

There is some virtue in this suggestion, but also some vice. While differently 
weighted systems can embody the same partitions and thus display the same out­
put performance on any given input, they will still learn quite differently in the 
face of a protracted sequence of new and problematic inputs. This is because the 
learning algorithm that drives the system to new points in weight space does not 
care about the relatively global partitions that have been made in activation space. 
All it cares about are the individual weights and how they relate to apprehended 
error. The laws of cognitive evolution, therefore, do not operate primarily at the 
level of the partitions, at least on the view of things here being explored. Rather, 
they operate at the level of the weights. Accordingly, if we want our 'unit of cog­
nition' to figure in the laws of cognitive development, the point in weight space 
seems the wiser choice of unit. We need only concede that different global the­
ories can occasionally produce identical short-term behavior. 

The level of the partitions certainly corresponds more closely to the 'concep­
tual' level, as understood in common sense and traditional theory, but the point 
is that this seems not to be the most important dynamical level, even when expli­
cated in neurocomputational terms. Knowing a creature's vector-space partitions 
may suffice for the accurate short-term prediction of its behavior, but that knowl-
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edge is inadequate to predict or explain the evolution of those partitions over the 
course of time and cruel experience. Knowledge of the weights, by contrast, is 
sufficient for this task. This gives substance to the conviction, voiced back in sec­
tion II, that to explain the phenomenon of conceptual change, we need to unearth 
a level of subconceptual combinatorial elements within which different concepts 
can be articulated, evaluated, and then modified according to their performance. 
The connection weights provide a level that meets all of these conditions. 

This general view of how knowledge is embodied and accessed in the brain 
has some further appealing features. If we assume that the brains of the higher 
animals work in something like the fashion outlined, then we can explain a num­
ber of puzzling features of human and animal cognition. For one thing, the speed­
of-relevant-access problem simply disappears. A network the size of a human 
brain-with 1011 neurons, 103 connections on each, 1014 total connections, and 
at least 10 distinct layers of'hidden' units-can be expected, in the course of grow­
ing up, to partition its internal vector spaces into many billions of functionally 
relevant subdivisions, each responsive to a broad but proprietary range of highly 
complex stimuli. When the network receives a stimulus that falls into one of these 
classes, the network produces the appropriate activation vector in a matter of only 
tens or hundreds of milliseconds, because that is all the time it takes for the 
parallel-coded stimulus to make its way through only two or three or ten layers 
of the massively parallel network to the functionally relevant layer that drives the 
appropriate behavioral response. Since information is not stored in a long list that 
must somehow be searched, but rather in the myriad connection weights that con­
figure the network, relevant aspects of the creature's total information are auto­
matically accessed by the coded stimuli themselves. 

A third advantage of this model is its explanation of the functional persistence 
of brains in the face of minor damage, disease, and the normal but steady loss 
of its cells with age. Human cognition degrades fairly gracefully as the physical 
plant deteriorates, in sharp contrast to the behavior of typical computers, which 
have a very low fault tolerance. The explanation of this persistence lies in the 
massively parallel character of the computations the brain performs, and in the 
very tiny contribution that each synapse or each cell makes to the overall compu­
tation. In a large network of 100,000 units, the loss or misbehavior of a single 
cell will not even be detectable. And in the more dramatic case of widespread cell 
loss, so long as the losses are more or less randomly distributed throughout the 
network, the gross character of the network's activity will remain unchanged: 
what happens is that the quality of its computations will be progressively 
degraded. 

Turning now toward more specifically philosophical concerns, we may note 
an unexpected virtue of this approach concerning the matter of simplicity. This 
important notion has two problems. It is robustly resistant to attempts to define 
or measure it, and it is not clear why it should be counted an epistemic virtue in 
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any case. There seems no obvious reason, either a priori or a posteriori, why the 
world should be simple rather than complex, and epistemic decisions based on 
the contrary assumption thus appear arbitrary and unjustified. Simplicity, con­
clude some (Van Fraassen 1980), is a merely pragmatic or aesthetic virtue, as 
opposed to a genuinely epistemic virtue. But consider the following story. 

The rock/mine network of figure 5 displays a strong capacity for generalizing 
beyond the sample echoes in its training set: it can accurately discriminate en­
tirely new samples of both kinds. But trained networks do not always generalize 
so well, and it is interesting what determines their success in this regard. How 
well the training generalizes is in part a function of how many hidden units the 
system possesses, or uses to solve the problem. There is, it turns out, an optimal 
number of units for any given problem. If the network to be trained is given more 
than the optimal number of hidden units, it will learn to respond appropriately 
to all of the various samples in its training set, but it will generalize to new samples 
only very poorly. On the other hand, with less than the optimal number, it never 
really learns to respond appropriately to all of the samples in its training set. 

The reason is as follows. During the training period, the network gradually 
generates a set of internal representations at the level of the hidden units. One 
class of hidden-unit activation vectors is characteristic of rocklike input vectors; 
another class is characteristic of minelike input vectors. During this period, the 
system is theorizing at the level of the hidden units, exploring the space of pos­
sible activation vectors, in hopes of finding some partition or set of partitions on 
it that the output layer can then exploit in turn, so as to draw the needed distinc­
tions and thus bring the process of error-induced synaptic adjustments to an end. 

If there are far too many hidden units, then the learning process can be partially 
subverted in the following way. The lazy system cheats: it learns a set of un­
related representations at the level of the hidden units. It learns a distinct 
representation for each sample input (or for a small group of such inputs) drawn 
from the very finite training set, a representation that does indeed prompt the cor­
rect response at the output level. But since there is nothing common to all of the 
hidden-unit rock representations, or to all of the hidden-unit mine representa­
tions, an input vector from outside the training set produces a hidden-unit 
representation that bears no relation to the representations already formed. The 
system has not learned to see what is common within each of the two ·stimulus 
classes, which would allow it to generalize effortlessly to new cases that shared 
that common feature. It has just knocked together an ad hoc 'look-up table' that 
allows it to deal successfully with the limited samples in the training set, at which 
point the error messages cease, the weights stop evolving, and the system stops 
learning. (I am grateful to Terry Sejnowski for mentioning to me this wrinkle in 
the learning behavior of typical networks.) 

There are two ways to avoid this ad hoc, unprojectible learning. One is to en­
large dramatically the size of the training set. This will overload the system's abil-
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ity to just 'memorize' an adequate response for each of the training samples. But 
a more effective way is just to reduce the number of hidden units in the network, 
so that it lacks the resources to cobble together such wasteful and ungeneralizable 
internal representations. We must reduce them to the point where it has to find 
a single partition on the hidden-unit vector space, a partition that puts all of the 
sample rock representations on one side, and all of the sample mine representa­
tions on the other. A system constrained in this way will generalize far better, 
for the global partition it has been forced to find corresponds to something com­
mon to each member of the relevant stimulus class, even if it is only a unifying 
dimension of variation (or set of such dimensions) that unites them all by a 
similarity relation. It is the generation of that similarity relation that allows the 
system to respond appropriately to novel examples. They may be new to the sys­
tem, but they fall on a spectrum for which the system now has an adequate 
representation. 

Networks with only a few hidden units in excess of the optimal number will 
sometimes spontaneously achieve the maximally simple 'hypothesis' despite the 
excess units. The few unneeded units are slowly shut down by the learning al­
gorithm during the course of training. They become zero-valued elements in all 
of the successful vectors. Networks will not always do this, however. The needed 
simplicity must generally be forced from the outside, by a progressive reduction 
in the available hidden units. 

On the other hand, if the network has too few hidden units, then it lacks the 
resources even to express an activation vector that is adequate to characterize the 
underlying uniformity, and it will never master completely even the smallish 
corpus of samples in the training set. In other words, simplicity may be a virtue, 
but the system must command sufficient complexity at least to meet the task at 
hand. 

We have just seen how forcing a neural network to generate a smaller number 
of distinct partitions on a hidden-unit vector space of fewer dimensions can pro­
duce a system whose learning achievements generalize more effectively to novel 
cases. Ceteris paribus, the simpler hypotheses generalize better. Getting by with 
fewer resources is of course a virtue in itself, though a pragmatic one, to be sure. 
But this is not the principal virtue here displayed. Superior generalization is a 
genuinely epistemic virtue, and it is regularly displayed by networks constrained, 
in the fashion described, to find the simplest hypothesis concerning whatever 
structures might be hidden in or behind their input vectors. 

Of course, nothing guarantees successful generalization: a network is always 
hostage to the quality of its training set relative to the total population. And there 
may be equally simple alternative hypotheses that generalize differentially well. 
But from the perspective of the relevant microdynamics, we can see at least one 
clear reason why simplicity is more than a merely pragmatic virtue. It is an 
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epistemic virtue, not principally because simple hypotheses avoid the vice of be­
ing complex, but because they avoid the vice of being ad hoc. 

VI. How Faithfully Do These Networks Depict the Brain? 

The functional properties so far observed in these model networks are an en­
couraging reward for the structural assumptions that went into them. But just how 
accurate are these models, as depictions of the brain's microstructure? A wholly 
appropriate answer here is uncertain, for we continue to be uncertain about what 
features of the brain's microstructure are and are not functionally relevant, and 
we are therefore uncertain about what is and is not a 'legitimate' simplifying as­
sumption in the models we make. Even so, it is plain that the models are inac­
curate in a variety of respects, and it is the point of the present section to summa­
rize and evaluate these failings. Let me begin by underscoring the basic respects 
in which the models appear to be correct. 

It is true that real nervous systems display, as their principal organizing fea­
ture, layers or populations of neurons that project their axons en ma.sse to some 
distinct layer or population of neurons, where each arriving axon divides into 
multiple branches whose end bulbs make synaptic connections of various weights 
onto many cells at the target location. This description captures all of the sensory 
modalities and their primary relations to the brain; it captures the character of the 
various areas of the central brain stem; and it captures the structure of the cerebral 
cortex, which in humans contains at least six distinct layers of neurons, where 
each layer is the source and/or the target of an orderly projection of axons to 
and/or from elsewhere. 

It captures the character of the cerebellum as well (figure 9a), a structure dis­
cussed in an earlier paper (Churchland 1986) in connection with the problem of 
motor control. I there described the cerebellum as having the structure of a very 
large 'matrix multiplier', as schematized in figure 9b. Following Pellionisz and 
Llinas (1982), I ascribed to this neural matrix the function of performing sophisti­
cated transformations on incoming activation vectors. This is in fact the same 
function performed between any two layers of the three-layered networks de­
scribed earlier, and the two cases are distinct only in the superficial details of their 
wiring diagrams. A three-layered network of the kind discussed earlier is equiva­
lent to a pair of neural matrices connected in series, as is illustrated in figures 1 Oa 
and lOb. The only substantive difference is that in figure lOa the end branches 
synapse directly onto the receiving cell body itself, while in 1 Ob they synapse onto 
some dendritic filaments extending out from the receiving cell body. The actual 
connectivity within the two networks is identical. The cerebellum and the motor 
end of natural systems, accordingly, seem further instances of the gross pattern 
at issue. 

But the details present all manner of difficulties. To begin with small ones, note 
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that in real brains an arriving axon makes synaptic contact with only a relatively 
small percentage of the thousands or millions of cells in its target population, not 
with every last one of them as in the models. This is not a serious difficulty, since 
model networks with comparably pared connections still manage to learn the re­
quired transformations quite well, though perhaps not so well as a fully connected 
network. 

More seriously, real axons, so far as is known, have terminal end bulbs that 
are uniformly inhibitory, or uniformly excitatory, depending on the type of neu­
ron. We seem not to find a mixture of both kinds of connections radiating from 
the same neuron, nor do we find connections changing their sign during learning, 
as is the case in the models. Moreover, that mixture of positive and negative in­
fluences is essential to successful function in the models: the same input cell must 
be capable of inhibiting some cells down the line at the same time that it is busy 
exciting others. Further, cell populations in the brain typically show extensive 
'horizontal' cell-to-cell connections within a given layer. In the models there are 
none at all (see, e.g., figure 4). Their connections join cells only to cells in distinct 
layers. 

These last two difficulties might conceivably serve to cancel each other. One 
way in which an excitatory end bulb might serve to inhibit a cell in its target popu­
lation is first to make an excitatory connection onto one of the many small inter-
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neurons typically scattered throughout the target population of main neurons, 
which interneuron has made an inhibitory synaptic connection onto the target 
main neuron. Exciting the inhibitory interneuron would then have the effect of 
inhibiting the main neuron, as desired. And such a system would display a large 
number of short 'horizontal' intralayer connections, as is observed. This is just 
a suggestion, however, since it is far from clear that the elements mentioned are 
predominantly connected in the manner required. 

More seriously still, there are several major problems with the idea that net­
works in the brain learn by means of the learning algorithm so effective in the 
models: the procedure of back-propagating apprehended errors according to the 
generalized delta rule. That procedure requires two things: 1) a computation of 
the partial correction needed for each unit in the output layer, and via these a com­
putation of a partial correction for each unit in the earlier layers, and 2) a method 
of causally conveying these correction messages back through the network to the 
sites of the relevant synaptic connections in such a fashion that each weight gets 
nudged up or down accordingly. In a computer simulation of the networks at issue 
(which is currently the standard technique for exploring their properties), both 
the computation and the subsequent weight adjustments are easily done: the com­
putation is done outside the network by the host computer, which has direct access 
to and control over every element of the network being simulated. But in the 
self-contained biological brain, we have to find some real source of adjustment 
signals, and some real pathways to convey them back to the relevant units. Unfor­
tunately, the empirical brain displays little that answers to exactly these re­
quirements. 

Not that it contains nothing along these lines: the primary ascending pathways 
already described are typically matched by reciprocal or 'descending' pathways 
of comparable density. These allow higher layers to have an influence on affairs 
at lower layers. Yet the influence appears to be on the activity levels of the lower 
cells themselves, rather than on the myriad synaptic connections whose weights 
need adjusting during learning. There may be indirect effects on the synapses, of 
course, but it is far from clear that the brain's wiring diagram answers to the de­
mands of the back-propagation algorithm. 

The case is a little more promising in the cerebellum (figure 9a), which con­
tains a second major input system in the aptly-named climbing fibers (not shown 
in the diagram for reasons of clarity). These fibers envelop each of the large Pur­
kinje cells from below in the same fashion that a climbing ivy envelops a giant 
oak, with its filamentary tendrils reaching well up into the bushy dendritic tree 
of the Purkinje cell, which tree is the locus of all of the synaptic connections made 
by the incoming parallel fibers. The climbing fibers are thus at least roughly posi­
tioned to do the job that the back-propagation algorithm requires of them, and 
they are distributed one to each Purkinje cell, as consistent delivery of the error 
message requires. Equally, they might serve some other quite different learning 
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algorithm, as advocated by Pellionisz and Llinas (1985). Unfortunately, there is 
as yet no compelling reason to believe that the modification of the weights of the 
parallel-fiber-to-Purkinje-dendrite synapses is even within the causal power of 
the climbing fibers. Nor is there any clear reason to see either the climbing fibers 
in the cerebellum, or the descending pathways elsewhere in the brain, as the 
bearers of any appropriately computed error-correction messages appropriate to 
needed synaptic change. 

On the hardware side, therefore, the situation does not support the idea that 
the specific back-propagation procedure of Rumdhart et al. is the brain's central 
mechanism for learning. (Neither, it should be mentioned, did they claim that it 
is.) And it is implausible on some functional grounds as well. First, in the process 
of learning a recognition task, living brains typically show a progressive reduc­
tion in the reaction time required for the recognitional output response. With the 
delta rule, however, learning involves a progressive reduction in error, but reac­
tion times are constant throughout. A second difficulty with the delta rule is as 
follows. A necessary element in its calculated apportionment of error is a 
representation of what would have been the correct vector in the output layer. 
That is why back-propagation is said to involve a global teacher, an information 
source that always knows the correct answers and can therefore provide a perfect 
measure of output error. Real creatures generally lack any such perfect informa­
tion. They must struggle along in the absence of any sure compass toward the 
truth, and their synaptic adjustments must be based on much poorer information. 

And yet their brains learn. Which means that somehow the configuration of 
their synaptic weights must undergo change, change steered in some way by error 
or related dissatisfaction, change that carves a path toward a regime of decreased 
error. Knowing this much, and knowing something about the microstructure and 
microdynamics of the brain, we can explore the space of possible learning proce­
dures with some idea of what features to look for. If the generalized delta rule 
is not the brain's procedure, as it seems not to be, there remain other possible 
strategies for back-propagating sundry error measures, strategies that may find 
more detailed reflection in the brain. If these prove unrealizable, there are other 
procedures that do not require the organized distribution of any global error mea­
sures at all; they depend primarily on local constraints (Hinton and Sejnowski 
1986; Hopfield and Tank 1985; Barto 1985; Bear et al. 1987). 

One of these is worthy of mention, since something along these lines does ap­
pear to be displayed in biological brains. Hebbian learning (so-called after D. 0. 
Hebb, who first proposed the mechanism) is a process of weight adjustment that 
exploits the temporal coincidence, on either side of a given synaptic junction, of 
a strong signal in the incoming axon and a high level of excitation in the receiving 
cell. When such conjunctions occur, Hebb proposed, some physical or chemical 
change is induced in the synapse, a change that increases its 'weight'. Of course, 
high activation in the receiving cell is typically caused by excitatory stimulation 
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from many other incoming axons, and so the important temporal coincidence here 
is really between high activation among certain of the incoming axons. Those 
whose high activation coincides with the activation of many others have their sub­
sequent influence on the cell increased. Crudely, those who vote with winners be­
come winners. 

A Hebbian weight-adjusting procedure can indeed produce learning in arti­
ficial networks (Linsker, 1986), although it does not seem to be as general in its 
effectiveness as is back-propagation. On the other hand, it has a major functional 
advantage over back-propagation. The latter has scaling problems, in that the 
process of calculating and distributing the relevant adjustments expands geomet­
rically with the number of units in the network. But Hebbian adjustments are lo­
cally driven; they are independent of one another and of the overall size of the 
network. A large network will thus learn just as quickly as a small one. Indeed, 
a large network may even show a slight advantage over a smaller, since the tem­
poral coincidence of incoming stimulations at a given cell will be better and better 
defined with increasing numbers of incoming axons. 

We may also postulate 'anti-Hebbian' processes, as a means ofreducing synap­
tic weights instead of increasing them. And we need to explore various possible 
flavors of each. We still have very little understanding of the functional properties 
of these alternative learning strategies. Nor are we at all sure that Hebbian learn­
ing, as described above, is really how the brain typically adjusts its weights. 
There does seem to be a good deal of activity-sensitive synaptic modification oc­
curring in the brain, but whether its profile is specifically Hebbian is not yet estab­
lished. Nor should we expect the brain to confine itself to only one learning 
strategy, for even at the behavioral level we can discern distinct types oflearning. 
In sum, the problem of what mechanisms actually produce synaptic change dur­
ing learning is an unsolved problem. But the functional success of the generalized 
delta rule assures us that the problem is solvable in principle, and other more 
plausible procedures are currently under active exploration. 

While the matter of how real neural networks generate the right configuration 
of weights remains obscure, the matter of how they perform their various cogni­
tive tasks once configured is a good deal clearer. If even small artifical networks 
can perform the sophisticated cognitive tasks illustrated earlier in this paper, there 
is no mystery that real networks should do the same or better. What the brain dis­
plays in the way of hardware is not radically different from what the models con­
tain, and the differences invite exploration rather than disappointment. The brain 
is of course very much larger and denser than the models so far constructed. It 
has many layers rather than just two or three. It boasts perhaps a hundred distinct 
and highly specialized cell types, rather than just one. It is not a single n-layer 
network, but rather a large committee of distinct but parallel networks, interact­
ing in sundry ways. It plainly commands many spaces of stunning complexity, 
and many skills in consequence. It stands as a glowing invitation to make our 



92 Paul M. Churchland 

humble models yet more and more realistic, in hopes of unlocking the many 
secrets remaining. 

VII. Computational Neuroscience: 
The Naturalization of Epistemology 

One test of a new framework is its ability to throw a new and unifying light 
on a variety of old phenomena. I will close this essay with an exploration of 
several classic issues in the philosophy of science. The aim is to reconstruct them 
within the framework of the computational neuroscience outlined above. In sec­
tion 5 we saw how this could be done for the case of theoretical simplicity. We 
there saw a new way of conceiving of this feature, and found a new perspective 
on why it is a genuine epistemic virtue. The hope in what follows is that we may 
do the same for other problematic notions and issues. 

A good place to begin is with the issue of foundationalism. Here the central 
bone of contention is whether our observation judgments must always be theory 
laden. The traditional discussion endures largely for the good reason that a great 
deal hangs on the outcome, but also for the less momentous reason that there is 
ambiguity in what one might wish to count as an 'observation judgment' (an ex­
plicitly uttered sentence? a covert assertion? a propositional attitude? a conscious 
experience? a sensation?), and a slightly different issue emerges depending on 
where the debate is located. 

But from the perspective of this essay, it makes no difference at what level the 
issue might be located. If our cognitive activities arise from a weave of networks 
of the kind discussed above, and if we construe a global theory as a global con­
figuration of synaptic weights, as outlined in section 5, then it is clear that no cog­
nitive activity whatever takes place in the absence of vectors being processed by 
some specific configuration of weights. That is, no cognitive activity whatever 
takes place in the absence of some theory or other. 

This perspective bids us see even the simplest of animals and the youngest of 
infants as possessing theories, since they too process their activation vectors with 
some configuration of weights or other. The difference between us and them is 
not that they lack theories. Rather, their theories are just a good deal simpler than 
ours, in the case of animals. And their theories are much less coherent and or­
ganized and informed than ours, in the case of human infants. Which is to say, 
they have yet to achieve points in overall weight space that partition their 
activation-vector spaces into useful and well-structured subdivisions. But insofar 
as there is cognitive activity at all, it exploits whatever theory the creature embod­
ies, however useless or incoherent it might be. 

The only place in the network where the weights need play no role is at the 
absolute sensory periphery of the system, where the external stimulus is trans­
duced into a coded input vector, for subsequent delivery to the transforming 
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layers of weights. However, at the first occasion on which these preconceptual 
states have any effect at all on the downstream cognitive system, it is through a 
changeable configuration of synaptic weights, a configuration that produces one 
set of partitions on the activation-vector space of the relevant layer of neurons, 
one set out of millions of alternative possible sets. In other words, the very first 
thing that happens to the input signal is that it gets conceptualized in one of many 
different possible ways. At subsequent layers of processing, the same process is 
repeated, and the message that finally arrives at the linguistic centers, for ex­
ample, has been shaped at least as much by the partitional constraints of the 
embedded conceptual system(s) through which it has passed as by the distant sen­
sory input that started things off. 

From the perspective of computational neuroscience, therefore, cognition is 
constitutionally theory laden. Presumptive processing is not a blight on what 
would otherwise be an unblemished activity; it is just the natural signature of a 
cognitive system doing what it is supposed to be doing. It is just possible that some 
theories are endogenously specified, of course, but this will change the present 
issue not at all. Innateness promises no escape from theory ladenness, for an en­
dogenous theory is still a theory. 

In any case, the idea is not in general a plausible one. The visual system, for 
example, consists of something in the neighborhood of 1010 neurons, each of 
which enjoys better than 103 synaptic connections, for a total of at least 1013 

weights, each wanting specific genetic determination. That is an implausibly 
heavy load to place on the coding capacity of our DNA molecules. (The entire 
human genome contains only about 109 nucleotides.) It would be much more 
efficient to specify endogenously only the general structural principles of a type 
oflearning network that is then likely to learn in certain standard directions, given 
the standard sorts of inputs and error messages that a typical human upbringing 
provides. This places the burden of steering our conceptual development where 
it belongs-on the external world, an information source far larger and more 
reliable than the genes. 

It is a commonplace that we can construct endlessly different theories with 
which to explain the familiar facts of the observable world. But it is an immediate 
consequence of the perspective here adopted that that we can also apprehend the 
'observable world' itself in a similarly endless variety of ways. For there is no 
'preferred' set of partitions into which our sensory spaces must inevitably fall. It 
all depends on how the relevant networks are taught. If we systematically change 
the pattern of the error messages delivered to the developing network, then even 
the very same history of sensory stimulations will produce a quite differently 
weighted network, one that partitions the world into classes that cross-classify 
those of current 'common sense', one that finds perceptual similarities along 
dimensions quite alien to the ones we currently recognize, one that feeds its out-
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puts into a very differently configured network at the higher cognitive levels as 
well. 

In relatively small ways, this phenomenon is already familiar to us. Specialists 
in various fields, people required to spend years mastering the intricacies of some 
domain of perception and manipulation, regularly end up being able to perceive 
facts and to anticipate behaviors that are wholly opaque to the rest of us. But there 
is no reason why such variation should be confined to isolated skills and special­
ized understanding. In principle, the human cognitive system should be capable 
of sustaining any one of an enormous variety of decidedly global theories con­
cerning the character of its commonsense Lebenswelt as a whole. (This possibil­
ity, defended in Feyerabend 1965, is explored at some length via examples in 
Churchland 1979. For extended criticism of this general suggestion see Fodor 
1984. For a rebuttal and counterrebuttal see Churchland 1988 and Fodor 1988.) 

To appreciate just how great is the conceptual variety that awaits us, consider 
the following numbers. With a total of perhaps 1011 neurons with an average of 
at least 103 connections each, the human brain has something like 1014 weights 
to play with. Supposing, conservatively, that each weight admits of only ten pos­
sible values, the total number of distinct possible configurations of synaptic 
weights ( = distinct possible positions in weight space) is 10 for the first weight, 
time~410 for the second weight, times 10 for the third weight, etc., for a total of 
1010 , or 101oo,ooo,ooo,ooo,ooo! ! This is the total number of (just barely) distin-
guishable theories embraceable by humans, given the cognitive resources we cur­
rently command. To put this number into perspective, recall that the total number 
of elementary particles in the entire universe is only about 1087 • 

In this way does a neurocomputational approach to perception allow us to 
reconstruct an old issue, and to provide novel reasons for the view that our per­
ceptual knowledge is both theory laden and highly plastic. And it will do more. 
Notice that the activation-vector spaces that a matured brain has generated, and 
the prototypes they embody, can encompass far more than the simple sensory 
types such as phonemes, colors, smells, tastes, faces, and so forth. Given high­
dimensional spaces, which the brain has in abundance, those spaces and the proto­
types they embody can encompass categories of great complexity, generality, and 
abstraction, including those with a temporal dimension, such as harmonic oscilla­
tor, projectile, traveling wave, Samba, twelve-bar blues, democratic election, 
six-course dinner, courtship, elephant hunt, civil disobedience, and stellar col­
lapse. It may be that the input dimensions that feed into such abstract spaces will 
themselves often have to be the expression of some earlier level of processing, 
but that is no problem. The networks under discussion are hierarchically arranged 
to do precisely this as a matter of course. In principle then, it is no harder for 
such a system to represent types of processes, procedures, and techniques than 
to represent the 'simple' sensory qualities. From the point of view of the brain, 
these are just more high-dimensional vectors. 
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This offers us a possible means for explicating the notion of a paradigm, as 
used by T. S. Kuhn in his arresting characterization of the nature of scientific un­
derstanding and development (Kuhn 1962). A paradigm, for Kuhn, is a prototypi­
cal application of some set of mathematical, conceptual, or instrumental 
resources; an application expected to have distinct but similar instances, which 
it is the job of normal science to discover or construct. Becoming a scientist is 
less a matter of learning a set of laws than it is a matter of mastering the details 
of the prototypical applications of the relevant resources in such a way that one 
can recognize and generate further applications of a relevantly similar kind. 

Kuhn was criticized for the vagueness of the notion of a paradigm, and for the 
unexplicated criterion of similarity that clustered further applications around it. 
But from the perspective of the neurocomputational approach at issue, he can be 
vindicated on both counts. For a brain to command a paradigm is for it to have 
settled into a weight configuration that produces some well-structured similarity 
space whose central hypervolume locates the prototypical application(s). And it 
is only to be expected that even the most reflective subject will be incompletely 
articulate on what dimensions constitute this highly complex and abstract space, 
and even less articulate on what metric distributes examples along each dimen­
sion. A complete answer to these questions would require a microscopic examina­
tion of the subject's brain. That is one reason why exposure to a wealth of ex­
amples is so much more effective in teaching the techniques of any science than 
is exposure to any attempt at listing all the relevant factors. We are seldom able 
to articulate them all, and even if we were able, listing them is not the best way 
to help a brain construct the relevant internal similarity space. 

Kuhn makes much of the resistance typically shown by scientific communities 
to change or displacement of the current paradigm. This stubbornness here 
emerges as a natural expression of the way in which networks learn, or occasion­
ally fail to learn. The process of learning by gradient descent is always threatened 
by the prospect of a purely local minimum in the global error gradient. This is 
a position where the error messages are not yet zero, but where every small 
change in the system produces even larger errors than those currently encoun­
tered. With a very high-dimensional space, the probability of there being a simul­
taneous local minimum in every dimension of the weight space is small: there is 
usually some narrow cleft in the canyon out which the configuration point can 
eventually trickle, thence to continue its wandering slide down the error gradient 
and toward some truly global minimum. But genuine local minima do occur, and 
the only way to escape them once caught is to introduce some sort of random noise 
into the system in hopes of bouncing the system's configuration point out of such 
tempting cul-de-sacs. Furthermore, even if a local quasi-minimum does have an 
escape path along one or more dimensions, the error gradient along them may 
there be quite shallow, and the system may take a very long time to find its way 
out of the local impasse. 
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Finally, and just as importantly, the system can be victimized by a highly 
biased 'training set'. Suppose the system has reached a weight configuration that 
allows it to respond successfully to all of the examples in the (narrow and biased) 
set it has so far encountered. Subsequent exposure to the larger domain of more 
diverse examples will not necessarily result in the system's moving any significant 
distance away from its earlier configuration, unless the relative frequency with 
which it encounters those new and anomalous examples is quite high. For if the 
encounter frequency is low, the impact of those examples will be insufficient to 
overcome the gravity of the false minimum that captured the initial training set. 
The system may require 'blitzing' by new examples if their collective lesson is 
ever to 'sink in'. 

Even if we do present an abundance of the new and diverse examples, it is quite 
likely that the delta rule discussed earlier will force the system through a sequence 
of new configurations that perform very poorly indeed when re-fed examples 
from the original training set. This temporary loss of performance on certain 
previously 'understood' cases is the price the system pays for the chance at achiev­
ing a broader payoff later, when the system finds a new and deeper error mini­
mum. In the case of an artificial system chugging coolly away at the behest of 
the delta rule, such temporary losses need not impede the learning process, at 
least if their frequency is sufficiently high. But with humans the impact of such 
a loss is often more keenly felt. The new examples that confound the old configu­
ration may simply be ignored or rejected in some fashion, or they may be quaran­
tined and made the target of a distinct and disconnected learning process in some 
adjacent network. Recall the example of sublunary and superlunary physics. 

This raises the issue of explanatory unity. A creature thrown unprepared into 
a complex and unforgiving world must take its understanding wherever it can find 
it, even if this means generating a disconnected set of distinct similarity spaces, 
each providing the creature with a roughly appropriate response to some of the 
more pressing types of situation it typically encounters. But far better if it then 
manages to generate a single similarity space that unifies and replaces the varia­
tion that used to reside in two entirely distinct and smaller spaces. This provides 
the creature with an effective grasp on the phenomena that lay between the two 
classes already dealt with, but which were successfully comprehended by neither 
of the two old spaces. These are phenomena that the creature had to ignore, or 
avoid, or simply endure. With a new and more comprehensive similarity space 
now generating systematic responses to a wider range of phenomena, the creature 
has succeeded in a small piece of conceptual unification. 

The payoff here recalls the virtue earlier discovered for simplicity. Indeed, it 
is the same virtue, namely, superior generalization to cases beyond those already 
encountered. This result was achieved, in the case described in section 5, by re­
ducing the number of hidden units, thus forcing the system to make more efficient 
use of the representational resources remaining. This more efficient use is real-
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ized when the system partitions its activation-vector space into the minimal num­
ber of distinct similarity subspaces consistent with reducing the error messages 
to a minimum. When completed, this process also produces the maximal organi­
zation within and among those subspaces, for the system has found those enduring 
dimensions of variation that successfully unite the diversity confronting it. 

Tradition speaks of developing a single 'theory' to explain everything. Kuhn 
(1962) speaks of extending and articulating a 'paradigm' into novel domains. 
Kitcher (1981, 1989) speaks of expanding the range of application of a given 'pat­
tern of argument'. It seems to me that we might unify and illuminate all of these 
notions by thinking in terms of the evolving structure of a hidden-unit activation­
vector space, and its development in the direction of representing all input vectors 
somewhere within a single similarity space. 

This might seem to offer some hope for a Convergent Realist position within 
the philosophy of science, but I fear that exactly the opposite is the case. For one 
thing, nothing guarantees that we humans will avoid getting permanently stuck 
in some very deep but relatively local error minimum. For another, nothing 
guarantees that there exists a possible configuration of weights that would reduce 
the error messages to zero. A unique global error minimum relative to the human 
neural network there may be, but for us and for any other finite system interacting 
with the real world, it may always be nonzero. And for a third thing, nothing 
guarantees that there is only one global minimum. Perhaps there will in general 
be many quite different minima, all of them equally low in error, all of them carv­
ing up the world in quite different ways. Which one a given thinker reaches may 
be a function of the idiosyncratic details of its learning history. These considera­
tions seem to remove the goal itself- a unique truth - as well as any sure means 
of getting there. Which suggests that the proper course to pursue in epistemology 
lies in the direction of a highly naturalistic and pluralistic form of pragmatism. 
For a running start on precisely these themes, see Munevar 1981 and Stich 1989. 

VIII. Concluding Remarks 

This essay opened with a survey of the problems plaguing the classical or 'sen­
tential' approach to epistemology and the philosophy of science. I have tried to 
sketch an alternative approach that is free of all or most of those problems, and 
has some novel virtues of its own. The following points are worth noting. Simple 
and relatively small networks of the sort described above have already demon­
strated the capacity to learn a wide range of quite remarkable cognitive skills and 
capacities, some of which lie beyond the reach of the older approach to the nature 
of cognition (e.g., the instantaneous discrimination of subtle perceptual qualities, 
the effective recognition of similarities, and the real-time administration of com­
plex motor activity). While the specific learning algorithm currently used to 
achieve these results is unlikely to be the brain's algorithm, it does provide an 
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existence proof: by procedures of this general sort, networks can indeed learn 
with fierce efficiency. And there are many other procedures awaiting exploration. 

The picture oflearning and cognitive activity here painted encompasses the en­
tire animal kingdom: cognition in human brains is fundamentally the same as cog­
nition in brains generally. We are all of us processing activation vectors through 
artfully weighted networks. This broad conception of cognition puts cognitive 
theory firmly in contact with neurobiology, which adds a very strong set of con­
straints on the former, to its substantial long-term advantage. 

Conceptual change is no longer a problem: it happens continuously in the nor­
mal course of all cognitive development. It is sustained by many small changes 
in the underlying hardware of synaptic weights, which changes gradually reparti­
tion the activation-vector spaces of the affected population of cells. Conceptual 
simplicity is also rather clearer when viewed from a neurocomputational perspec­
tive, both in its nature and in its epistemological significance. 

The old problem of how to retrieve relevant information is transformed by the 
realization that it does not need to be 'retrieved'. Information is stored in brainlike 
networks in the global pattern of their synaptic weights. An incoming vector acti­
vates the relevant portions, dimensions, and subspaces of the trained network by 
virtue of its own vectorial makeup. Even an incomplete version of a given vector 
(i.e., one with several elements missing) will often provoke essentially the same 
response as the complete vector by reason of its relevant similarity. For example, 
the badly whistled first few bars of a familiar tune will generally evoke both its 
name and the rest of the en tire piece. And it can do this in a matter of milliseconds, 
because even if the subject knows thousands of tunes, there are still no lists to 
be searched. 

It remains for this approach to comprehend the highly discursive and linguistic 
dimensions of human cognition, those that motivated the classical view of cogni­
tion. We need not pretend that this will be easy, but we can see how to start. We 
can start by exploring the capacity of networks to manipulate the structure of ex­
isting language, its syntax, its semantics, its pragmatics, and so forth. But we 
might also try some novel approaches, such as allowing each of two distinct net­
works, whose principal concerns and activities are nonlinguistic, to try to learn 
from scratch some systematic means of manipulating, through a proprietary 
dimension of input, the cognitive activities of the other network. What system of 
mutual manipulation-what language-might they develop? 

The preceding pages illustrate some of the systematic insights that await us if 
we adopt a more naturalistic approach to traditional issues in epistemology, an 
approach that is grounded in computational neuroscience. However, a recurring 
theme in contemporary philosophy is that normative epistemology cannot be 
'naturalized' or reconstructed within the framework of any purely descriptive 
scientific theory. Notions such as 'justified belief and 'rationality', it is said, can­
not be adequately defined in terms of the nonnormative categories to which any 
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natural science is restricted, since "oughts" cannot be derived from "ises". Con­
clusions are then drawn from this to the principled autonomy of epistemology 
from any natural science. 

While it may be true that normative discourse cannot be replaced without re­
mainder by descriptive discourse, it would be a distortion to represent this as the 
aim of those who would naturalize epistemology. The aim is rather to enlighten 
our normative endeavors by reconstructing them within a more adequate concep­
tion of what cognitive activity consists in, and thus to free ourselves from the bur­
den of factual misconceptions and tunnel vision. It is only the autonomy of episte­
mology that must be denied. 

Autonomy must be denied because normative ·issues are never independent of 
factual matters. This is easily seen for our judgments of instrumental value, as 
these always depend on factual premises about causal sufficiencies and dependen­
cies. But it is also true of our most basic normative concepts and our judgments 
of intrinsic value, for these have factual presuppositions as well. We speak of 
justification, but we think of it as a feature of belief, and whether or not there are 
any beliefs and what properties they have is a robustly factual matter. We speak 
of rationality, but we think of it as a feature of thinkers, and it is a substantive 
factual matter what thinkers are and what cognitive kinematics they harbor. Nor­
mative concepts and normative convictions are thus always hostage to some back­
ground factual presuppositions, and these can always prove to be superficial, con­
fused, or just plain wrong. If they are, then we may have to rethink whatever 
normative framework has been erected upon them. The lesson of the preceding 
pages is that the time for this has already come. 
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