M ANvsMACHINE

Challenging Human Supremacy at Chess

Foreword by Viadimir Kramnik

Karsten Miiller & Jonathan Schaeffer

Some quotes have been edited for consistency. This includes changing descriptive

chess notation to algebraic notation, as well as standardizing spelling and
punctuation.

All wwowm games given in this book were played using tournament controls
(typically 40 moves in 2 hours), except where indicated otherwise.

,;.o authors thank 14th World Chess Champion Vladimir Kramnik for agreeing to
2.38 the foreword for this book. We had an engaging hour-long conversation with
him — a highlight for both Karsten and Jonathan!

Thank you to Monroe (Monty) Newborn for permission to use his photographs.
All ChessBase photographs come courtesy of Frederic Friedel. The photos by
Mde Vincente and Gerhard Hund are used under the Creative Commons License.
Additional permission from IBM, Camegie Mellon University, and Semen
Karpenko are appreciated.

Foreword

Technology has forever changed the world of chess. Today’s player has access
to... strong sparring partners whenever you want to play (and they never get tired);
encyclopaedic opening books (that really aren’t books); comprehensive games .
collections (that include virtually every game played by every player of note); and
perfection in some endgames (that defy human understanding). As a young chess
player growing up in Russia and honing my skills, I had access to none of these
tools. T had to find willing opponents, annotate printed opening books, transcribe
important games, and attempt to discover the mysteries of the endgames. [’'m not
complaining, just describing the not-so-distant past. Computers have changed so
much in chess, as indeed they have transformed so much of the world today.

I was late to adopt computers into my training regime. At the beginning of my
career | used computers only for their game databases. In 1995, while helping
Garry Kasparov with his world championship match with Anand, I saw how
important the use of computer applications were for his training. After working
with Garry, I started to use computers quite regularly. However, it was mostly
used for blunder checking. We were analyzing on the board and sometimes you
could easily just simply blunder something, miss some cheap trick, and just make
mistakes. At that time, the playing strength of the programs was quite weak, but
still strong enough to embarrass us. Even Kasparov sometimes biundered in his
analysis, and the computer was ruthless and impassionate about pointing out the
mistakes. This was a humbling experience for a grandmaster! Simply having the
ability to check for blunders was in itself a useful tool.

Then came Kasparov’s famous matches against DEEp BLUE. Frankly, I was not
taking computers t00 seriously at that time. Even though I understood that it was
not that simple to beat the computer, I was sure that Garry was going to win both
matches. Of course I analyzed the games. I found it unsurprising that he won the
1996 match by a score of 4-2 — the games were normal and logical. The 1997 match
was dominated by a lot of PR that distracted Garry (but not DEEP BLuE) and this
may have played a role in the final result. But I'm absolutely convinced that Garry
was still a much stronger player than DEEP BLuE. The final result was bad luck on
Garry’s part, that he lost his nerves at some point. Even so, he was the better player.

My own fights with the machines also started around that time. I don’t really know
when I lost my first game against a machine. I was not a big fan of playing training
games with computers, but I probably lost one such game. My first tournament with
a computer participant was probably a rapid chess event in Mainz around 1999.

My first classical chess game against a computer was in 2000 in Dortmund. This
was a grandmaster round-robin tournament and the computer’s participation was
controversial. Some players were against including the machine; I didn’t mind so
much. I won the game in my first classical man-machine encounter.

Then I prepared for my first match against DEgp FRITZ, which was planned for 2001.
The first step in my preparation was to analyze all the 1997 Kasparov-DEeEp BLUE

e

games, with FriTz running on my laptop. Just a laptop — no special chess chips
analyzing 100s of millions of positions per second. To my extreme surprise, FrITz
was simply playing better than Deep BLUE. I was shocked. T couldn’t understand
how Garry managed to lose this match. When moves involved deep calculation,
Fri1z made the same moves as Deep BLUE nine times out of ten. When a move
choice was based on a positional decision, Fritz usually made a slightly better
move than Deep BLUE. | was puzzled -- I was expecting Deep BLUE to be much
stronger. [was even a bit frightened that I was going to play against Fritz but with
it using more computing power. After doing this analysis, I was really surprised that
Gary managed to lose the match to Deep BLUE.

The first match with Deep Fritz actually took place in 2002. It started very well for
me with two draws and two wins. I was extremely happy. But then in game five I
blundered a piece in basically one move. In game six I was leading by one point
and so I sacrificed material. So in the end the match was drawn and the question of
whether man or machine was the better player remained open. In my second match
with Deep Fritz in 2006 things did not go as well and I ended up losing.

It was already difficult, but still not totally impossible, for a human to beat a top
computer program. But within maybe two or three years it became completely
impossible. I think by around 2010 there was no chance anymore for the human
side. In the history of computer chess, there were three chapters. First the humans
were better for a long time. Then the interesting chapter, where man and machine
were close in strength, lasted maybe 10 to 15 years. And now, the final chapter,
computers are stronger for good.

Computers have changed the game of chess, the world of chess, and even my
profession. There are many pluses to what computers have brought to chess. Of
most value is that they improved our understanding and appreciation of the game.
The minuses are obviously that there is much less opportunity for the human side —
less room to be creative. We must not forget that chess is, after all, a game between
two humans. Computers may now be stronger than the human World Champion,
but this achievement does not change the real value of the game: the pleasure that
we humans get from playing one another at this beautiful intellectual game. And
that will never change.

When I chose chess as my profession, I never imagined that one of the legacies of
my career would be as a contributor to the field of artificial intelligence research.
Both Garry and I put our titles and reputations on the line in the interests of
Science. We both had early victories and eventually suffered painful defeats. I have
no regrets. I enjoyed the challenge of playing against technology.

Grandmaster Karsten Miiller and Professor Jonathan Schaeffer have managed to
describe the fascinating history of the unequal fight of man against machine in an
entertaining and instructive way. It evoked pleasant and not so pleasant memories
of my own fights against the monsters. I hope that their work gives you as much
pleasure as it has given me.

Vladimir Kramnik
14th World Chess Champion

Table of Contents

Pre-Game e 9
Opening................................... e 13
10000 (1770-1956)ooeooee e e, ... 14
2 1600 (1957-1969) e 33
Middlegame. 55
32000 (1970-1978) ...\ e 56
4 2200 (1979-1983) ..o 92
3 2500 (1984-1989)..................... sl 13
B 2650 (1990-1996).................... 147
12750 (1996-1997).................... 197
Endgame......................oooooeo o s EET 247
B 2850 (1998-2003). o\t 248
9 3000+ (2004-present)................cciiiiiiiiiiiiian, 320
Post-Bame............................. ... e 365
A References........ iiiaaanns 374
BGames..................................... R s RS il

1 Robert). Fischer - MacHack exhibition match (1977) savsierraaesin8]

2 David Levy - Chess 4.5 exhibition game (1977) e e ..382

3 David Levy - Cuess 4.7 match (1978). e SR 383

4 Additional Man-Machine Games (1970s) SR s e85

Pre-Game

10

The courtier stared at the chessboard, searching for a way out of his dilemma.
Internally his mind was in turmoil, and externally it was starting to show. Faint
hints of moisture could be seen on his forehead, above his knitted brow. He
moved restlessly in his chair causing his frilly clothes to make rustling sounds.
None of this, of course, bothered his adversary. Indeed, none of this was even
noticed by him.

Across the chessboard was a man dressed in Middle Eastern clothes and wearing
a turban. The opponent stared down at the board. He was emotionless in his
expression, apparently unflappable, completely oblivious to the royalty and senior
govemment officials watching his every move.

The courtier reached out and played a move. In less than a minute, the opponent
replied, rather stiffly moving a piece.

“Oh no! I am losing!” thought the courtier in horror. “How is this possible? How
can a mere machine, a combination of pulleys and wheels, best me, the creation of
God? What wizardry makes this possible?”” And then there was a surge of panic.
There was no way out of his predicament. “I will be forced to resign in front of the
Empress. How can I possibly recover from this public humiliation?”

The year was 1770 and people believed that technology had conquered the human
game of chess.

Today’s generation of chess players was raised on computers. To many of them,

it is hard to imagine what life was like before cell phones, the Internet, Facebook,
and Google. Technology now affects virtually every aspect of our daily life. Our
love for the game of chess is not immune to the computer revolution. What serious
player does not use a computer as a sparring partner or an analysis aid? Even if you
are not a grandmaster, just to be able to play online whenever you want, against

an opponent from literally anywhere in the world, allows you to indulge in your
passion more so than ever before. Technology is helping us collectively to hone
our skills through more practice and insightful analysis. Computers have helped
discover secrets of the game and increased our appreciation of its beauty.

Although we take for granted that computers play strong chess, that was not always
the case. In fact, grandmaster-level computer play did not happen until the late
1980s, and commercially available grandmaster programs arrived around the year
2000. In the fast-paced technology world of today, this seems like an eternity ago!

Today computers play at a level that is often called “super human”; they are
stronger than the best human players (sorry, Magnus). The story of how computer
chess programs grew from a whimsical idea into a 3300 ELO mega-grandmaster

s intimately tied with the story of incredible technological advances that have
happened over a 250-year period. The historical record, amazingly, started in the
year 1770 when a brilliant engineer built a machine (named the Turx) that fooled
people into thinking it played chess. Of course it was an illusion, but the seed of an
idea was planted.

This book tells the story of the epic battle of man versus machine for supremacy at
chess. From an entertainment-oriented beginning (1770), the foundational ideas

(1830-1952), the first programs capable of playing a complete game of chess (1960s),
and the stunning victory of Deep BLug over World Champion Garry Kasparov (1997),
the story of the scientific quest to build something many said was impossible is an
important part of the history of computing, even the history of mankind.

This book tells the story of a cerebral battle between two remarkable groups of people.

The first are the scientists, who are passionate about developing new technology
and pushing it to its limit. For the fledgling field of artificial intelligence research,
building a chess-playing machine capable of competing with the strongest human
players was one of the original “grand challenge” problems to tackle. Chess, it was
felt, was a microcosm of more complex applications; if you could not satisfactorily
address chess — a mere game — then what hope was there for harder problems? Fifty
years of research, new ideas, improved computing hardware, and competitions
against humans were needed to finally achieve this goal. It is an outstanding
achievement and is justifiably regarded as a technological milestone.

The second group is the chess players, who are passionate about playing an
intellectually stimulating game and improving their abilities. They are keen to
demonstrate superiority over any opponent, whether man or machine. To excel at
chess requires a rich set of highly refined skills, including imagination, calculation,
reasoning, and learning. These skills set human chess players apart from mere
calculating machines and, thus, human superiority at chess was unquestioned.
Reality was something different and today it is acknowledged that the best chess
players in the world are silicon based. Yet, the human achievement is impressive.
Despite the onslaught of technology — computers analyzing millions of positions
per second — humans remained on top for many years. The challenge coming from
computers forced humans to up their game. Today’s top players have achieved an
unprecedented level of skill.

The motivations of these two sides are not all that different. The scientists did
what they did in pursuit of knowledge (discover new ideas), ego (be first; be world
champion), and, in some cases, financial gains. The chess players participated
because of their competitive spirit (winning matters), ego (winning; be the best),
and, in some cases, financial gains.

Man playing machine at chess was a scientific experiment, one that would have not
been possible without human contestants. It would have been easy for the strongest
chess players to say “no,” and deprive the scientists of crucial performance data.
Instead they bravely agreed to play. The stakes to them were enormous; a loss
could hurt their reputation and pride in front of a global audience. In contrast, the
scientists had little at stake; a lost game meant going back to the drawing board,
searching for new ideas, or fixing a programming error.

These man-machine encounters have happened before and will happen again.

It was only in March 2016 that the world watched in fascination as Lee Sedol,
many-time World Champion at the Oriental game of Go, did battle with the
computer ALpiaGo. In 2011 it was man versus machine at the question-answer
game of Jeopardy!.

The man-machine battle for supremacy in chess is a landmark in the history of

1

technology. There are numerous books that document the technical side of this

12

epic story. The scientists, by definition, have a requirement to publish their work.

Hence there are literally hundreds of articles documenting the ideas, advances,
experiments, and competitive results achieved by chess-playing computers. The
human side is not often told. Few chess players are inclined to write about their
man-machine encounters, other than annotating the games played.

This book strives to bring the two sides together. It tells the stories of many of the
key scientists and chess players that participated in a 50-year research project to
advance man’s understanding of computing technology.

To enrich the story, we include three types of sidebars throughout the book:
technology (explanations of the ideas that advanced the technology for building
chess programs), context (quotes from chess players and scientists giving their
opinions and predictions), and computer game milestones (showing how the
technological advances were affecting other games). This allows the reader to
understand the broader context of the computer chess story.

Join us as we recount the epic battle of man versus machine for supremacy at the
game of chess.

13

14

_

0000 (1770-1956)

Cast your mind back in time. Can you imagine what the world was like in the year
1900? Automobiles, airplanes, washing machines, and microwave ovens either did
not exist or were novelties. What kind of quality of life was that? No televisions,
computers, Internet, and cell phones. What could we possibly do for entertainment?
The 20th century saw an unprecedented level of innovation, likely only to be
superseded by what happens in the 21st century.

With the advent of technology, it was inevitable that the competitive spirit of
humankind would come to the fore. After all, if these machines were capable of
performing tasks that we could do, then the obvious question to ask was “Who

can do it better?” The idea of besting an individual’s physical capabilities using

a machine goes back a long time. In the 1800s, there is the well-known story of
John Henry who matched his skills at pounding steel spikes into rocks with that of
a steam-powered drill. Henry won that initial contest, but his days as champ were
numbered. Later on, there were examples of human runners racing against horseless
carriages. Over short distances, man could win — but only for a little while.

The man-versus-machine battles at strength and endurance activities are in the
distant past. But man still battles machine when it comes to other physical skills,

such as dexterity. For example, humans can still play football (soccer) and table
tennis better than machines.

What about in the intellectual domain? We regard the capabilities of our brains as
what differentiates us from other life on our planet. Our ability to reason sets us
apart. Yet with the advent of computers, we have to ask the thought-provoking and
humbling question as to whether we are so special.

One of the profoundest contributions of the 20th century was the realization that

human’s intellectual abilities could be realized using a computer. Imagine being

in the year 1900 and told that a little black box (with the whimsical name of

“computer”) could correct spelling mistakes in your writing, do your accounting,

and help you with navigation. Hearsay! Yet all of this is commonplace today. These
problems are solved using data as input to a well-defined formula, and a machine
capable of executing that formula using the data.

What about playing a game of chess? Surely that is different. There is no well-
defined formula for playing strong chess. Further, there are other intangible

elements at play, including imagining, reasoning, learning, searching, applying
knowledge, and using psychology. That makes the problem much harder, right?

The research field of artificial intelligence has been working to develop computer
programs that exhibit behavior that one would normally call “intelligent.” It does
not mean that the programs are smart, just that their behavior appears to be smart.
All computer programs use a well-defined specification ~ the software that they

are given — and chess programs are no exception. However, unlike spell checking,
accounting, and navigation, the mathematical formulas used for playing chess are
not well defined.

Building a chess-playing machine that is stronger than any human chess player was
one of the initial “grand challenge” problems for artificial intelligence researchers.
For over 60 years, many researchers, commercial developers, and hobbyists around
the world have worked on furthering progress on solving this fascinating problem.
Progress was slow largely because achieving this goal depended on the invention of
numerous other technologies. The Deep BLUE victory over Garry Kasparov in 1997
would not have happened without amazing technological progress on many fronts
over the past century. Some examples include:

+ Computers. In 1900, the state of the art was an electro-mechanical machine that
could count data on a punched card. A physical realization of a computer as we
know it today did not emerge until the late 1940s.

Engineering of the components needed to build microscopic devices. In the year
1900, who could imagine the precision required to build a computer chip at the
nanometer level (one billionth of a meter)?

» Programming languages and tools for developing software. Imagine the wonder
of sitting in a classroom in the year 1900 and being told that you could write a
textual description of the solution to a problem (the “program”) — and a machine
would do exactly what you asked it to do!

¢ Algorithms that can be used for a chess program. What is an easy and/or
efficient and/or practical way to use a computer to sort? Or sift through billions
of possibilities? Optimize or maximize a computational result? Numerous
algorithms (precise step-by-step methods) had to be invented.

* Devices for storing data. Data storage in the year 1900 consisted of paper in
filing cabinets. One could manually manage hundreds or perhaps thousands of
documents, but beyond that was a challenge. In 1956, the cost of a one-megabyte
(one million bytes) disk was roughly $10,000 (US); by 1990 the cost of a
one-gigabyte (billion bytes) disk was roughly $5,000; in 2016, a one-terabyte
(thousand billion bytes) costs around $25!

* Electronic communication, the ability to send data anywhere in the world in an
instant. This was superior to sending physical mail by car, train, and/or ship.
Transmitting information that used to take several days (or weeks) now takes a
fraction of a second.

* Chess knowledge. A century of studying the game has resulted in a deeper
understanding of the theory and practice of strong play. The chess community
learned much from studying Lasker, Nimzowitsch, Réti, and so on. Endgame
technique has evolved considerably, starting with Rubinstein and Capablanca.
Opening analysis has increased the breadth of playable openings and the depth
of the analysis; some early names that come to mind include Griinfeld, Pirc,
Alekhine, and Najdorf.

All of the above happened in the past century, most of it in the last half of the century.

15

16

Building a hardware/software entity capable of playing chess at a level higher

than the very best human players is a remarkable feat. It is a testament to the
incredible technology that has been built, and the passionate researchers and
software developers who turned ideas into reality. It is also a testament to the brave
grandmasters that were willing to do battle with the machine, allowing scientists

to measure progress towards their goal. In turn, however, the capabilities of the
computer were used by the chess players, allowing them to improve their game
and advance towards unprecedented levels of human skill at a rich and complex
game. This book tells the story of man versus machine for supremacy at chess, an
“intellectual game par excellence” (Newell, Simon, and Shaw 1958).

Incredibly, the idea of a chess-playing machine goes back almost 250 years. Baron
Wolfgang von Kempelen (1734-1804) was a respected scientist who held favor

in the court of the Empress of Austria. In 1770, he made a bold promise to the
Empress that he could build an automaton that was more impressive than anything
she had ever seen. True to his word, six months later, he delivered a machine that
appeared to play chess.

Von Kempelen was a genius. The contraption he conceived of and built was
impressive! It consisted of an ornate wood desk with many compartments, some
containing a mechanical contraption of numerous interacting wheels of various
sizes. The top of the desk had a built-in chessboard, and the pieces could be found
in one of the desk’s compartments. Seated behind the desk was an automaton that
looked like a man dressed in middle-eastern robes. When von Kempelen’s creation
was running, the wheels would tumn giving rise to the impression that something
was being calculated. Eventually the machine stopped, and the human-like figure
reached out and played a move. Periodically, von Kempelen would approach the
machine and wind some dials, planting the idea that the machine used springs for
its energy. The machine had no official name, but because of the way the automaton
was dressed — in a turban — it was often referred to as the Turk.

The machine was a stunning demonstration of human ingenuity, and everyone who
witnessed it play was duly impressed (von Windisch 1783).

The most daring idea that a mechanism could ever conceive would be without doubt
that of a machine which would imitate by more than mere form and movement the
masterpiece of all creation. Not only has Mr. von Kempelen conceived such a project,
he has executed it, and his chess-player is without any contradiction the most amazing
automaton which has ever existed.

The Turk toured Europe to great success and eventually travelled to the United
States. During its illustrious career, the machine did battle with many well-known
personalities, including Benjamin Franklin. It even went to the most famous mecca
for chess in the 1800s, the Café de la Régence, to challenge with strongest players
in Paris, eventually getting a chance to play the great Philidor. After the game,
Philidor apparently claimed that it was “his most fatiguing game of chess ever!”
Sadly, no record of the encounter has survived.

The Turk chess “machine.”
(Von Windisch 1783)

Perhaps the Turk’s most famous opponent was Napoleon Bonaparte (Wairy 1895):

The automaton was seated in front of a table on which a chessboard was arranged
for a game. His Majesty took a chair, and sitting down opposite the automaton, said,
laughing: “Come on, comrade; here’s to us two.” The automaton saluted and made

a sign with the hand to the Emperor, as if to bid him begin. The game opened, the
Emperor made two or three moves, and intentionally a false one. The automaton
bowed, took up the piece and put it back in its place. His Majesty cheated a second
time; the automaton saluted again, but confiscated the piece. “That is right,” said His

Majesty, and cheated the third time. Then the automaton shook its head, and passing
its hand over the chessboard, it upset the whole game.

r This account of the game’s start is likely apocryphal. It is hard to imagine a
man of Napoleon’s stature (and ego) being toyed with by the machine. It seems
more plausible that Napoleon was the one sweeping the pieces off the board. He
7 played three times, losing badly; this was not the kind of treatment he was used to
_ — receiving! For the record, here is one of their man versus “machine” encounters.

17

11 timcly things that we take for

computational abilities needed to play chess. It included

_ zgo_ao: Bonaparte —Turk _ granted today: memory, input and output (punched cards), 2 computing nﬂmmna‘ and
ﬂam..c_e e .Sw an instruction set. Although Babbage’s research concentrated on the architecture of
Schrrunn Place, Vienna, 1807 machines that could compute, his muse, Ada, Countess of Lovelace, thought about
1.e4 5 2.9£3 £)c6 3. Acd D6 4.5 €2 fc5 5.a3 d6 6.0-0 Qg4 7.%d3 algorithms — how to design & set of instructions that a computer noE_.n_ use to carry
£)h5 8.h3 Le2 9.%e2 H\f4 10.%el Hd4 11.4b3 Hh3 12.9h2 ¥hi | out a task. While Babbage is the father of computing, Ada Lovelace is the mother
13.g3)3 14.Fg2 Hel 15.Eel g4 16.d3 Af217.2Eh1 ¥g3 18.%f1 . of computer programming.

H.d4 19.Fe2 @.WM 20.59d1 ¥hi 21.&d2 o2 22.%el Hgl 23.50¢3 fHec3
24.bxc3 We2# 0-1

Today, it is easy to see that the machine was an illusion. Von Kempelen cleverly
designed his contraption to create the impression that the TURK calculated and

then played chess moves. Of course, hidden inside the machine was a strong chess
player (the chess master Allgaier, in Napoleon’s case). The cleverness of the design
was how a human could be inside and avoid detection even when, as part of von
Kempelen's showmanship, many of the compartment doors were opened to reveal
empty space or mechanical parts. Von Kempelen never revealed his secret. and
much effort was devoted in the popular and scientific literature trying to figure out
how the Turk worked. Some correctly figured out the mystery; most did not.

l .

I

WIT'H-: |
ezl

e
e o k-

A addad

YT T

NN

=
!

The Turk had an amazing career. It died in 1854, the victim of a fire. However, _
the idea of a chess automaton continued, in the likes of Ayees (Hastings 1895

winner Harry Nelson Pillsbury did time in the machine) and MepHisTO (World 7
Championship challenger Isidor Gunsberg was the computer for a while — a chess

master has to do what needs to be done to pay the bills).

The TurK was the first example of using computers to cheat at chess. Here we had
man impersonating a computer, a theme that continued to 1929 (when Asees, oddly
enough, also died due to a fire). Later on, of course, as computers became stronger
at chess. we have a role reversal: humans misrepresented their playing abilities by
using computers to decide on their moves.

While the Turk was a marvelous technological illusion, it actually inspired a

technological revolution. While it was giving exhibitions in London in 1819.a Chales Babbage with o moderm ectation of s ifrence Engine.

young scientist named Charles Babbage came to see it and was intrigued. He (ChessBase)

returned the following year and played against the machine, losing of course. While

Babbage understood that the Turk could not possibly be calculating moves on its In his autobiography, Babbage gives his reasoning about why he selected chess as
own, it led him to imagine what it would take to have a machine do that for real. a test-bed for his research and, impressively. the first al gorithm for a nca.ﬁﬁﬂ to
Thus was the inspiration for the dawn of the computer revolution. play a game (Babbage 1864). His thoughts on this matter were probably influenced
Charles Babbage is rightly considered the father of computing. In the early to mid by his work with Ada Lovelace. ’

1800s he envisioned building a mechanical device to perform calculations. Although After much consideration I selected for my test the contrivance of a machine that

the Turk had wheels and cogs rotating in such a way as to create the illusion of should be able to play a game of purely intellectual skill successfuily; such as [tic-tac-
computation, Babbage's Difference Engine was the real thing — it used the same toe], drafts [draughts/checkers], chess, &c.

technology to actually calculate results. It could compute simple mathematical

ﬁ T zum— nmw— i ﬁ i i : NWOm
as .-.mmﬂ wﬂ mnﬁEmﬂﬂww NDHH M—nnwﬂ.—{ __: 1 nume 1 ,—.ﬂm....nwﬂm.cﬂ.ﬁﬂnw to ascertain ﬁ_“—d opmions OW Uﬂﬁmoﬂw 1n every OwNmm OW :M‘O NEQ. OWN
B A €5.

whether they thought it required human reason o play games of skill. The almost

Babbage’s experience with the Turk inspired him, and the idea of building a constant answer was in the affirmative. Some supported this view of the case by
machine to play chess was at the back of his mind for much of his career. Later observing, that if it were otherwise then an automaton could play such games. > few
on he designed the Analytical Engine that, he believed, satisfied many of the of those who had acquaintance with mathematical science allowed the possibility of

19
18

machinery being capable of such work; but they most stoutly denied the possibility of
contriving such machinery on account of the myriads of combinations which even the
simplest games included.

On the first part of my inquiry I soon arrived at a demonstration that every game of
skill is susceptible of being played by an automaton.

Further consideration showed that if any position of the men upon the board were
assumed (whether that position were possible or impossible), then if the automaton
could make the first move rightly, he must be able to win the game, always supposing
that under the given position of the men that conclusion were possible.

Whatever move the automaton made, another move would be made by his adversary.
Now this altered state of the board is one amongst the many positions of the men in
which, by the previous paragraph, the automaton was supposed capable of acting,

Hence the question is reduced to that of making the best move under any possible
combinations of positions of the men.

Now the several questions the automaton has to consider are of this nature:

1. Is the position of the men, as placed before him on the board, a possible position?
That is, one which is consistent with the rules of the game?

. If so, has Automaton himself already lost the game?

. If not, then has Automaton won the game?

. If not, can he win it at the next move? If so, make that move.
. If' not, could his adversary, if he had the move, win the game?

. If so, Automaton must prevent him if possible.

~N N U kW N

. Ifhis adversary cannot win the game at his next move, Automaton must examine
whether he can make such a move that, if he were allowed to have two moves in
succession, he could at the second move have two different ways of winning the game;

and each of these cases failing, Automaton must look forward to three or more
successive moves.

Now I have already stated that in the Analytical Engine I had devised mechanical
means equivalent to memory, also that I had provided other means equivalent to
foresight, and that the Engine itself could act on this foresight.

In consequence of this the whole question of making an automaton play any game
depended upon the possibility of the machine being able to represent all the myriads
of combinations relating to it. Allowing one hundred moves on each side for the
longest game at chess, I found that the combinations involved in the Analytical Engine
enormously surpassed any required, even by the game of chess.

As soon as I had arrived at this conclusion I commenced an examination of a game
called {tic-tac-toe] usually played by little children. It is the simplest game with which
I am acquainted.

Although the algorithm omits important details, at its core is the principle of look-
ahead searching.

Babbage was never able to realize his dream of building the Analytic Engine,

as he was continually plagued by a lack of funding. Although his design was
purely mechanical (rotating wheels with cogs), the breadth of his vision and the
depth of his ideas would have profound impact on the computing revolution a
century later. Today’s modern computer has a high-level architecture not that
dissimilar from Babbage’s 19th century design. Just as importantly, he envisioned
a computing engine that did more than calculate numerical formulas. Without fully
understanding the implications, Babbage’s ideas were the forerunner of artificial
intelligence research.

Fast-forward fifty years. The first real chess-playing machine was built by Leonardo
Torres y Quevedo (1852-1936). Inspired by Babbage’s work, in the early 1900s he
had the idea of constructing a mechanical chess machine (a /a Babbage) that was
run using electronic circuits (a forerunner of modern computing). A machine-driven
arm would be used to move a piece. This was impressive technology for its time.

Torres y Quevedo decided to demonstrate his invention using the endgame of king
and rook versus king, with the human always playing the weaker side. He designed
an electronic circuit that adopted the simple algorithm of boxing in the king and
then delivering checkmate. If a win were possible, the program would always

play a winning sequence. Its algorithm guaranteed the final result, although not
necessarily using the minimal number of moves. As opposed to the Turk with its
human fraudsters, Torres y Quevedo’s creation was a real automaton, computing its
moves without any human input.

The machine was named EL AJEDRECISTA, Spanish for chess player. Although it was
built in 1912, it did not gain widespread attention until it was exhibited in Paris in
1914. As happened with the Turk, the machine captured the public’s imagination and
generated scientific discussion. World War I quickly ended the conversation. In 1920,
Leonardo’s son, Gonzalo, built a second, improved EL AJEDRECISTA. Of note was that
each chess piece had a metal ball at its base, and movement of a magnet undemeath
the board was used to make a move by rolling a piece to its destination square.

Torres y Quevedo’s invention was the first real chess-playing machine. In fact,
many regard it as the first computer game in history. Both EL AJEDRECISTAS can be
seen today at the Colegio de Ingenieros de Caminos, Canales y Puertos in Madrid.

Norbert Wiener (1948)
Renowned MIT mathematician

A chess machine could be built that “might very well be as good a player as the vast
| majority of the human race.”

21

22

:
g,

Leonardo Torres y Quevedo’s first chess-playing machine.
(Mde Vincente)

Fred Reinfeld (1948)
Chess author

Fred Reinfeld, introducing the game between Savielly Tartakower and Lajos
Steiner (Warsaw, 1935), wrote that: “When Professor Wiener of the Massachusetts
Institute of Technology invented a calculating machine which requires only one
ten-thousandth of a second for the most complicated computations, he was quoted
as saying, ‘I defy you to describe a capacity of the human brain which I cannot
duplicate with electronic devices.’

“Up to the time these lines were written, the Professor had apparently not yet
perfected an electronic device capable of making such chess moves as Tartakower’s
20th... The day may yet come, however, when we shall see such books as Robot’s
1000 Best Games, or when chess tournaments will have to be postponed because of
a steel shortage.”

| | :- D o —

The world saw amazing technological advances in the first half of the 20th century
because of and in spite of the global political upheavals. The most profound
advance was the invention of the computer. Researchers had known for a long
time (even before Babbage) that it was possible to build mechanical devices

to automate a series of mathematical calculations. However, the 1930s and in
particular the 1940s saw a number of important ideas come together, giving birth
to the modem computer. Key to this revolution was the notion of programmability
— that the machine would input a series of instructions to execute. Change the
instructions, and the machine would exhibit different behaviour. Contrast that with
EL AJEDRECISTA, where it could do one and only one task. The notion of a computer
was that it would be general purpose and do anything it was instructed to do.

Teams in the United States, Europe, and Great Britain worked independently to
build the first computer. Depending on your definition of a computer, one can
argue that each was first to the finish line! More importantly, people began to think
about what you could make these machines do. The early applications developed
for computers were, not surprisingly, military in nature. However, a number

of dreamers had grander aspirations for this technology. For example, Konrad
Zuse (1910-1995) in Germany, whose Z3 machine in 1941 has a strong claim to
being the first programmable computer, developed a programming language and
imagined how one might use it to program chess. Alan Turing, who worked on
building a special-purpose machine that could crack Germany’s secret wartime
message encryption technology, had discussions with his scientific colleagues — all
chess players — imagining how one might build artificially intelligence machines,
including playing chess. But the first to get his ideas out to a wider audience was an
American scientist, Claude Shannon.

Claude Shannon (1916-2001) was a researcher at Bell Telephone Laboratories in
the 1940s. He is considered the father of information theory, having made profound
contributions in a number of important areas of direct applicability to computing.
He understood what computers could do and this led him to consider chess as an
interesting application. In 1949 he gave a talk on the issues of getting a machine

to play chess; this was later elaborated into his pioneering paper “Programming a
Computer for Playing Chess.” In the paper, he justified the research community’s
interest in chess with the following discussion (Shannon 1950):

The chess machine is an ideal one to start with, since: (1) the problem is sharply
defined both in allowed operations (the moves) and in the ultimate goal (checkmate),
(2) it is neither so simple as to be trivial nor too difficult for satisfactory solution; Q‘v
chess is generally considered to require “thinking” for skillful play; a solution of this
problem will force us either to admit the possibility of a mechanized thinking or to
further restrict our concept of “thinking™; (4) the discrete structure of chess fits well
into the digital nature of modem computers.

If you add one more point — (5) that there are human opponents of varying skill
levels that allow one to be able to assess the strength of the chess machine — then
you have the introductory paragraph to most of the technical computer chess papers
written in the next fifty years!

23

24

Shannon’s paper touched on all the important aspects of a modern chess program.
The contribution in the paper that is most often quoted is the two search strategies
that he introduced:

Type A: consider all scenarios a fixed number of moves ahead. Shannon was
concerned that a program built on this idea “would be both slow and a weak
player.” The mathematics supported his claim. If in a typical position a player had
40 moves to choose from, then looking ahead one full move (each side plays a
move) would lead to 40x40 = 1,600 possibilities. This is certainly a manageable
number. But what if you consider two full moves ahead? 40x40x40x40 = 2,560,000
scenarios. More work, but still doable. Three full moves ahead? 4,096,000,000.
This is becoming a problem! This approach would soon be referred to as “brute-
force search,” usually with a derogatory connotation.

Type B: be smart about the move sequences considered. Shannon wanted to
ensure that “the machine does not waste its time in totally pointless variations,”
thus only examine those lines of play that are “important.” Of course, the whole
idea hinges on defining what “important” means. How do you decide which
move is relevant and which is irrelevant? Were that easy to decide, then chess
would not be as intellectually challenging as it is. This approach is often called
“selective search” — being selective (smart) about which moves are chosen to
invest search effort in.

By so clearly differentiating the two search strategies, Shannon unwittingly set off
a debate about the right approach for playing chess. Whereas Type B was a better
reflection of how humans played chess, it had the serious disadvantage of trying to
define “importance.” On the other hand, a Type A approach was simple to program;
it just got lost in the mathematical explosion of possibilities. As we shall see the
question of the appropriate choice of search strategy dominated the discussion of
computer chess for the next three decades.

Shannon concludes his paper with remarks that, with hindsight, are obvious yet
profound:

It is not being suggested that we should design the strategy in our own image. Rather
it should be matched to the capacities and weakness of the computer. The computer
is strong in speed and accuracy and weak in analytical abilities and recognition.
Hence, it should make more use of brutal calculation than humans, but with possible
variations increasing by a factor of [a thousand] every move, a little selection goes a
long way forward improving blind trial and error.

Consider the human brain and the computer as being two information-processing
architectures for intelligence. Each has strengths and weaknesses. Humans are
very good at visual analysis, reasoning by analogy, learning, and so on. Computers
are very good at doing repetitious tasks, precise calculations, memorizing vast
amounts of information, and so on. It is easy to think that the best way to build a
strong chess program is to copy the human approach — after all, it works! But the
simplicity of the argument does not match the reality of an implementation. What
is interesting is that many things that humans are good at are hard for computers
to do, and vice versa. When trying to solve a problem, such as chess, it is best

to exploit the strengths of the information-processing architecture and avoid the
weaknesses. Thus if one wants to write a chess program, take advantage of the
computer’s ability to do repetitious tasks (look at millions of positions), do precise
calculations (position evaluation), and memorization (openings and endgames).

In effect, that is what Shannon is saying. Just because humans play chess does not
mean it is a model we should copy for computers. Just because birds fly by flapping
their wings does not mean we should build airplanes in a similar way.

Computing science is a fast-paced field. Many papers are obsolete within a few
years of being published. Shannon’s paper is one of these exceptional intellectual
feats that stand the test of time. Reading the paper today, almost seven decades after
it appeared in print, one cannot help but be impressed at how farsighted he was.

Shannon never wrote a chess program himself. He was a tinkerer and liked to build
things. He did build a chess machine that allowed up to six pieces on the board.
It is unclear how well (or even if) the machine worked, as it never gave a public
demonstration. He was eclectic and inquisitive; he also built a machine to juggle balls.

.
7~
-
o
=
-
-
Fa

Claude Shannon (right) demonstrating his chess machine to chess master Fdward Lasker.
(Monroe Newborn)

25

Look-ahead Search

When searching ahead, minimax is the fundamental principle used for determining
the value of a chess move sequence. Pretend that the two players in a game are
given the mathematical names Max (short for Maximum) and Min (abbreviation of
Minimum). Max wants to achieve the best that is possible — winning a pawn (+1 in
material) is better than losing a knight (-3 in material). Min also wants to achieve
the best, but what is good for Min is bad for Max. Thus Min prefers a score of
-5 (Max loses a knight; Min wins a knight) to 1 (Max wins a pawn; Min loses a
pawn). In minimax search, given a choice of moves, Max always chooses the move
to maximize the reward; Min chooses the move that minimizes Max’s reward (or,
conversely, maximizes Min’s reward).

Consider a position, A, with White to move (the Max player). Assume, for
simplicity, that both players only have two legal moves in each position. The
example uses a simple material evaluation function, where a pawn is worth 1 point
and a piece is worth 3.

In the diagram below, the White player has a choice of two moves, one leading to
position Bl and the other to B2. Consider B1. Black has a choice of two moves,
leading to Cl1 and C2. Now it is White to play. White could play to DI. Our
evaluation of the position says material is equal, so the score is 0. Alternatively,
White could try playing to D2. The evaluation is +1, meaning a pawn has been
won. Now, given a choice of even material or winning a pawn, which would you
choose? The value of position Cl1 is 1, the maximum of the values from D1 and D2.
Similarly, the value of C2 is 3, the maximum of D3 (3) and D4 (1).

What is the value of position B1? It is Black to move, and Black wants White to do
as poorly as possible. Given the choice of playing to C1 (1, White is up a pawn) or
C2 (3, White is up a knight), Black will choose C1, the minimum of C! and C2. A
similar analysis can be done for position B2.

In our example below, the minimax value for position A is 1 — against Black’s best
defense White is guaranteed a score of 1 (a pawn ahead), the maximum of B1 and B2.

The above diagram is usually called a search “tree.” If you turn the diagram upside
down and use your imagination, then it looks like a tree. The starting position (A in
this case) is called the root of the tree. The positions at the bottom of the tree, where
the evaluation is done, are called leaves of the tree, And, of course, the lines that
connect one position to the next represent moves and are called branches.

(O»-

o
O=-

®--
OOAuw

OOAHA OOwno

.D;uo .DMMA .Uwuw .UAHA_ .Umuo .Umu.; .Dﬂu.o .Uwuw

The above diagram is called a depth-3 search tree. All sequences of 3 moves (White
moves; Black replies, White responds to Black’s reply) were considered. However,

T

%oéoasao,\o:wmwBEmcocwEorommumo85?:2EomBBBowm:mcmzwmomo:o ;
a move by a player as a “ply.” Thus the opening sequence 1.e4 e5 2.5f3 &6 is a
game of two moves, but four ply. _

After the war, Alan Turing ended up at Manchester University and worked in the
fledgling fields of computer hardware and software. But chess-playing machines
were never far from his thoughts. As far back as 1948 he wrote that, “One can
produce ‘paper machines’ for playing chess. Playing against such a machine gives a
definite feeling that one is pitting one’s wits against something alive.” This reflected
the discussions he had with his wartime colleagues at Bletchley Park (where the
German code-breaking work was done), including chess masters Conel Hugh
O’Donel (CHOD) Alexander, Harry Golombek, and Stuart Milner-Barry.

Turing’s presence at Manchester spurred interest in computer chess. In 1951,
Dietrich Prinz wrote a program for solving mate-in-two problems. His program
adopted a brute-force approach (Shannon Type A) — every move sequence of three
ply (White’s move, Black’s reply, and White’s move) was considered. The program
looked for any White move for which every possible Black move White had a
checkmating move. In other words, White (Max) could achieve checkmate because
Black (Min) could not find anything better than being checkmated. This was the
first use of computers to validate the correctness of human chess compositions.

1952: Checkers

Christopher Strachey (Manchester Computing Machine Laboratory) writes the first
working checkers program. It plays complete games against human opponents.

Evaluation Function

In minimax search, the positions at the bottom of the tree (leaf nodes) need to be
assigned a value. Some values are obvious: checkmate is a very high score, being
checkmated is very low (negative), and a draw is probably assessed as a 0. But what
about all the other positions? An evaluation function takes a chess position and
describes how good or bad the position is by relating it to a single number, usually
an integer. Some programs use the convention that a positive number means White
has the advantage; negative is in Black’s favor. Other programs use positive scores
to indicate that the side to move has the advantage. The bigger the number (positive
or negative) for one of the players, the larger the advantage or disadvantage. A score
of zero usually means that the chances are even (or, in the extreme case, that the
position is a draw).

In Shannon’s paper, he described a reasonable starting point for a computer being
able to assess the desirability of a position:

The evaluation function...should take into account the “long term” advantages
and disadvantages of a position, i.e. effects which may be expected to persist
over a number of moves longer than individual variations are calculated. Thus

27

28

[the evaluation is mainly concerned with positional or strategic considerations
7 rather than combinatorial or tactical ones. Of course there is no sharp line of

division; many features of a position are on the borderline. It appears, however,
7 that the following might properly be included in [an evaluation function]:

(1) Material advantage (difference in total material).
(2) Pawn formation:
(a) Backward, isolated and doubled pawns.
(b) Relative control of centre (pawns at e4, d4, c4).
(c) Weakness of pawns near king (e.g. advanced g pawn).
(d) Pawns on opposite colour squares from bishop.
(e) Passed pawns.
(3) Positions of pieces:

() Advanced knights (at €5, d5, c5, f5, €6, d6, c6, 16), especially if
protected by pawn and free from pawn attack.

(b) Rook on open file, or semi-open file.
(c) Rook on seventh rank.
(d) Doubled rooks

(4) Commitments, attacks and options:

(a) Pieces which are required for guarding functions and, therefore,
committed and with limited mobility.

(b) Attacks on pieces which give one player an option of exchanging.
(c) Attacks on squares adjacent to king.

(d) Pins. We mean here immobilizing pins where the pinned piece is of
value not greater than the pinning piece; for example, a knight pinned by
a bishop.

(5) Mobility.

These factors will apply in the middle game: during the opening and endgame
different principles must be used. The relative values to be given each of the
above quantities is open to considerable debate, and should be determined by
some experimental procedure. There are also numerous other factors which
may well be worth inclusion. The more violent tactical weapons, such as
discovered checks, forks and pins by a piece of lower value are omitted since
they are best accounted for by the examination of specific variations.

There really is not all that much difference between today’s programs and what
Shannon conjectured, with the important exception of additional terms in the

evaluation finction. This is a further testament to Shannon’s amazing foresight. L

Prinz’s program was conceptually simple to write because it only needed to give
one of two values to a position: it was either a checkmate or not — nothing else
mattered. But Turing was interested in having a program to play complete games of
chess against humans. He wrote the specifications for a chess evaluation function

‘\l

based on Shannon’s ideas. He even tried programming it, but it was a large task

for that time and never did get completed. However, in 1952 he decided to test

his ideas out — if he could not write the program, then he would simulate it. Only
someone anxious to see a chess program in action (and a little bit quirky) would
have come up with the idea of having the human emulate the decision-making
process of a computer. Basically, he would consider all moves in a position,
manually calculate the evaluation function for each of the resulting positions using
his algorithm, and then choose the move that led to the highest score. Of course this
was a tedious and error-prone process, but Turing was just crazy enough (in a good
way) to try it.

Turing tried his thought experiment at least twice. The first was against the wife of
one of his students. Unfortunately the game score for this historic encounter has
not survived. Turing annotates the second game in a paper published in 1953 but
without naming the human opponent (Turing 1953). However, writer Alex Bell later
tracked it done to a student named Alick Glennie. The following game represents the
first game of “computer” versus human at chess. Whereas the Turk used a human
to pretend to be a computer, Turing was a human actually emulating a computer. It
was a step forward in technology, albeit one that was not so readily repeated!

Consider all continuations of ths game conaisting
of a move by white, a reply by black, and another move
and reply. The value of tha positicn at the end of sach
of these sequences of moves is wetimated scoording to sams
suitadle rule. The values at earlier positions are then
oslculated by workibg backwarde move by move as in the
theoretical rule given &r. The move to be chosen is
that shich leads to the positicn with ths greatest value.

It 1p possible to arrange that no two positions have
the samo value. The rule is then wnambiguous, A very
simple form of valuss, but one mot having thies property,
i1s an 'evalustion of materisl', =,g. on the tas's

P = 1
it a 3
Shlobes)
B = 5
Q = 10

Checkmate + 1000

Alon Turing with the edited text of his famous 1953 paper on Computer Games.

Alan Turing computer simulation — Glennie, Alick
Irregular Open Game (42
Manchester, England, 1952

l.e4 e5 2..0¢c3 Hf6 3.d4 A b4 4.3 d6 5.8.d2 Hc6 6.d5 Nd4 7.h4 Qg4
8.a4 H)xf3+ 9.gxf3 A h5 10.4 b5+ c6 11.dxc6 0-0 12.cxb7 EbS8 13.0.26
Wa5 14.%e2 Hd7 15.2gl Hc5 16.EHg5 4.g6 17.4b5 Hxb7 18.0-0-0
HNc5 19.8.¢6 Bfc8 20.84d5 A xc3 21..8 xc3 ¥xa4 22.Hd2 Neb 23.Hg4

29

30

Dd4 24.d3 Hb5 25.0.b3 a6 26.Q8.c4 Ah5 27.5g3 a4 28.4 xb5
“xb5 29. ¥ xd6 BdS8 0-1

Turing (1953) summarized the game as follows:

If I were to sum up the weakness of the above system in a few words [would describe
it as a caricature of my own play. It was in fact based on an introspective analysis of my
thought processes when playing, with considerable simplifications. It makes oversights
which are very similar to those which I make myself, and which may in both cases be
ascribed to the considerable moves being inappropriately chosen. This fact might be
regarded as supporting the glib view which is often expressed, to the effect that ‘one
cannot programme a machine to play a better game than one plays oneself.’

Alex Bell interviewed Glennie many years after the game was played. Glennie
seemed to have no appreciation that he had inadvertently become an important part
of artificial intelligence history (Bell 1978).

As I remember, he persuaded me over lunch to take part in his chess experiment. I just
happened to be there and was willing to take part on the spur of the moment. It was
played in the afternoon, in his office, a rather bare placed with a small untidy table
with paper. We had a chessboard with pieces and Turing had his select rules written on
about six sheets of paper somewhat mixed up with other paper.

Laboratory gossip had told me that mechanical chess was one of Turing’s interests
so there were very few preliminaries before we started to play. He did explain briefly
what he wanted. You can see the recorded game. It seemed to go rather slowly and I
think I got slightly bored as I was not a keen player and had not played much before
or since — I knew a few standard openings but none of the finer points of strategy. I
was indeed a weak player: chess was for me a pleasant relaxation for odd moments
with other weak players.

During the game Turing was working to his rules and was clearly having difficulty
playing to them because they often picked moves which he knew were not the best.
He also made a few mistakes in following his rules which had to be backtracked. This
would occur when he was pondering the validity of White’s last move while I was
considering my move. There may have been other mistakes in following the rules that
escaped notice — possibly they could be detected from the record of the game. He had
a tendency to think he knew the move the rules would produce and then have second
thoughts. He would then try to find the piece of paper containing that section of the
rules, and to do so would start juggling with all his papers. We were playing on a
small table which did not help.

The game took 2 or 3 hours. Turing’s reaction to the progress of the play was mixed;
exasperation at having to keep to his rules; difficulty in actually doing so; and interest
in the experiment and the disasters into which White was falling. Of course, he could
see them coming. I remember it as a rather jolly afternoon and I believe Turing must
have enjoyed it too — in his way.

Unfortunately Turing died tragically at age 41. In his two decades of his work,
he was extremely productive: decoding German war-time messages, defining
the boundaries for what was and was not computable (today called the Turing

machine), and creating the Turing Test for deciding whether a computer program
was exhibiting intelligent behavior. And, of course, playing the first game of
“computer” chess.

In 1956, a group of scientists at Los Alamos National Research Laboratory, home
of the atomic bomb, were looking for a creative outlet (James Kister, Paul Stein,
Stanislaw Ulam, William Walden, and Mark Wells). They had access to state-
of-the-art computing technology and wanted to try programing something other
than physics calculations. They hit upon the idea of writing a chess program.
Unfortunately the computer they used, MANIAC I (Mathematical Analyzer,
Numerical Integrator, and Computer), was slow and had a small memory. This
limited what they could accomplish with chess. To compensate, they decided to
program a simpler version of the game — a 6x6 board without the bishops, no
castling, and pawns move only one square at a time (Kister et al. 1957). The program,
initially called MANIAC, was later referred to as the Los ALamos CHESS PROGRAM.

The Los Alamos program reportedly only played three games. The first game had
the program play itself. The second was against Martin Kruskal, a strong player who
later on became a famous mathematician and physicist. Kruskal gave the program
queen odds and eventually won. In the final game, the program defeated a lady who
learned to play the game a few days before. This is the first known instance of a non-
simulated computer program defeating a human opponent at a chess variant.

Los Auamos Chess Procram — Unnamed Opponent
Los Alomos, USA, 1956
Played on a 6x6 board. Remove all the bishops.

1.d3 b4 2.)f3 d4 3.b3 e4 4.\ el a4 5.bxa4 Hxad 6.HdA2 Hc3 7.5 x¢c3
bxc3+ 8.&d1 f4 9.a3 Eb6 10.a4 Ha6 11.a5 &d5 12.%a3 &bs 13. %a2+
De5 14.52b1 Hxas 15.Exb5 Exa2 16.Hb1 Has 17.f3 Ha4 18.fxe4 c4
19.5f3+ &d6 20.e5+ Hd5 21.exf6 Hc5 22. W xd4+ Hc6 23.5He5 1-0

In 1956, it had been almost 200 years since von Kempelen was inspired to build the first
chess automaton. In that time, amazing progress had been made at turning his illusion
into reality. The preliminaries were over. All the key technologies were in place:

* Calculating hardware. The first general-purpose computing machine had been
built, and year after year they would be improved. Further since the early 1950s,
machines were commercially available, albeit at a price that few could afford.
Each year the machines would get faster and the prices would drop.

¢ Data. Computers had internal storage and external storage. Like all computing
hardware of that era, the size of the data devices and their speed of access would
improve and the cost would drop.

* Software tools. 1956 was the dawn of the software age. The first mainstream
compiled programming language — FORTRAN — was about to be released.

* Algorithms. Many of the key ideas needed to for a computer program had been
envisioned. Computers were now available to scientists. It remained for an
adventurous person to write the first functioning chess program.

31

L]

£l

Interest. Numerous groups were interested in artificial intelligence (Al). The
Dartmouth Al conference was heid in 1936, heralding the start of an aggressive
Al research program. Building a program to play a strong game of chess was one
of the original challenge problems aiising from the Dartmouth discussions.

All the technical ingredients needed to build a chess-playing program were
available. Shannon supplied the recipe. Now someone had to create an entrée.

2

1600 (1957-1969)

Writing a chess program in the late 1950s was a challenging task. First,
programming languages were in their infancy. FORTRAN was a huge step up
from machine language, but the early program translators had a limited feature set,
were buggy, and generated code that was slow to execute. Second, the machines
had limited memory. A machine with 100,000 bytes of memory was exceptional,
but much of this precious resource was given to the operating system and program
code. Third, debugging tools were non-existent. When something went wrong, or
you suspected something was not right, there was little to help the programmer
find the problem. Finally, computers were costly and access was limited. Much of
the early efforts in chess programming were hampered by the challenge of getting
access to expensive computing hardware. Under these difficult conditions, progress
in developing strong chess programs was understandably slow.

Not surprisingly, much of the early work in computer chess was to be done by
people who were either an employee of a computer hardware company or worked
for a university. Both had limited access to precious computer time (especially in
the middle of the night).

IBM was a company who had access to the key ingredient for building a chess
program: state-of-the-art computers. All they needed were programmers — a skills’
set that was hard to find in those days. So, IBM did what was necessary to find
these people (Wall 2014):

IBM put an ad in the December 1956 issue of Scientific American and the New York
Herald Tribune newspaper seeking anyone interested in computer programming. The
ad featured a black knight chess piece, and said that “those who enjoy playing chess
or solving puzzles will like this work.” One of the applicants that responded to the

ad was US chess champion Arthur Bisguier (1929-2017). Bisguier was then hired as
an IBM programmer. ... Another applicant was Alex Bernstein, a U.S. Intercollegiate
champion. ... Another applicant was Don Schultz, who became president of the United
States Chess Federation. He was with IBM from 1957 to 1987.

Alex Bemnstein joined IBM and ended up leading a team (Michael de Van Roberts,
Timothy Arbuckle, and Martin Belsky) that developed the first program capable of
playing a complete game of chess. Soon-to-be grandmaster Arthur Bisguier became
the chess advisor for the project.

The program combined Shannon’s Type A approach (search four ply ahead) with
Type B (be selective and only consider seven “plausible” moves per position).
These limits reflected the technology available at the time (Bernstein and de Van
Roberts 1958):

These limits — four half-moves ahead with seven choices at each step — are dictated
by the time factor. It takes the machine close to eight minutes to decide on each move

33

34

in most cases. If it had to weigh eight plausible moves instead of seven at each level,
it would take about 15 minutes for a move. If it carried the examination to one more
level ahead, a single move would take some six and a half hours.

It is hard to imagine such search constraints today, where the calculation that
Bemnstein describes would take a fraction of a second using a modern computer.

In 1958 a movie was made of Bernstein playing a game against his program. The
narrator describes this encounter, one of the first chess games ever played by a
computer against a human (Education Testing Service 1958):

To find out how good a game of chess a machine might play, Mr. Bernstein and his
collaborators prepared a chess-playing program for the IBM 704, a digital computer that
has performed one billion calculations in a single day in computing the otbit of an arfificial
satellite. The chess-playing program is given to the 704 on a reel of magnetic tape.

On the chessboard itself the moves are made by Mr. Bemnstein for both players. As

he makes a move, he communicates it to the machine. The machine prints out the
position of all the pieces: its own and its opponents, to correspond with the chessboard
on every move. In calculating its moves, the machine considers the board square

by square. Is the square occupied? By whose man? Is it under attack? Can it be
defended? Can it be occupied? All this has taken a long time by computer standards:
one-tenth of a second. Now the computer proceeds to select its move. It has about 30

possible moves.

After asking eight preliminary questions about each of them, it selects seven of the 30
for further analysis. It tests each of the seven through four moves ahead, considering
its opponent’s possible replies and its own possible counter responses in each case.

It examines 2,800 positions in eight minutes. Now the machine prints out its move.

It elects to take the opponent’s knight with its own bishop. Mr. Bemstein takes the
machine’s bishop with his queen. The move is recorded. But the machine rejects the
move as illegal. The difficulty is an incorrect coding, which is corrected.

The game continues with the machine playing methodically and tirelessly. It's never
absent-minded and never makes an obvious blunder. In individual moves, it often
plays like a master. In a complete game, it can defeat an inexperienced player, but can
be outwitted by a good one. This game has gone up to the 21st move. Mr. Bernstein
attacks strongly, threatening the machine’s knight with his castle. He records the
move. The machine’s response is a useless pawn move. Its unprotected knight is lost
to Mr. Bernstein’s castle. The machine recognizes its position as hopeless and resigns.

After losing a game, the machine will still make the same moves again and lose in
the same way. Some day, though not soon, Mr. Bernstein feels, a program may be
designed that will enable the computer to profit by its own mistakes and improve its
chess game on the basis of its experience against human opponents.

Note some of the amazing statements in the text. The computer did one billion
caleulations in a single day. In contrast, modern computers will do several billion
in a second. The chess program analyzed 2,800 positions in eight minutes. That
works out to almost six positions per second. These numbers help explain the weak
play of the chess programs of that era. How strong would KomoDo, STOCKFISH, OT

Houpmi be if they could only analyze six positions per second?

The following game illustrates the limitations of the program’s search algorithm.
The opponent is described as “skillful” (Bernstein and de Van Roberts 1958).

Berwste Chess Procram — Unnamed Opponent
Irregular Open Game (96
Undated

l.e4 e5 2.8 ¢4 b6 3.d3 &) f6 4.085 Ab7 5.8.x£6 ¥xf6 6.5\ f ~
m.ﬂxam OXQ.W W.b.—um+ @O@ X X .@ 3 c6 7.0-0 AHW

1:.% clearly shows the disadvantage of the program’s search constraints. 10.5xe5
wins a pawn as ¥xe5 11.Eel loses. The material win is missed either because one

of the key moves is not in the seven possibilities considered per position, or after

Black’s 11th move, say 11... 0-0-0, Black is up a piece — the four-ply limit has been
reached!

10.c4 dxc4 11. 8 xc6+ Wxc6 12.dxc4 e4 13.5)
J g5 ¥rgb6 14.0h 15.f
H.c516.Hel 0-0 17.5)c3 e2+ = Fe I

Such a horrendous ending is the result of the search limitations discussed above.

0-1 (in 22 moves)

Alex Bernstein and Michael de Van Roberts (1958)
Chess program developers

Even with much faster computers than any now in existence it will be impractical

to consider more than six half moves ahead, investigating eight possible moves at
each stage.

Concurrent with Bernstein et al.’s work, the team of Allen Newell (1927-1992)
John Cliff Shaw (1922-1991),! and Herbert Simon (1916-2001) began using omuomm
as a model application for their research in creating human-like approaches to
computer problem solving. Newell and Simon worked at Camegie Tech (later

Carmegie Mellon University) and Shaw worked at the RAND Corporation (a non-
profit research organization). |

Zo@o: and Simon shared a strong belief that artificial intelligence success could be
achieved by having computers loosely mimic the problem solving strategies used
by humans. Thus a brute-force Shannon Type A search approach was not of interest
to them. Simon (1978) expressed his philosophy as such:

Information processing theories envisage problem solving as involving very selective
search through problem spaces that are often immense. Selectivity, based on rules

of thumb or “heuristics,” tends to guide the search into promising regions so that
solutions will generally be found after search of only a tiny part of the total space.

The result of their research was the NSS program, named using the initials of their
last names. It used goals to guide the search. Human experience was translated into

35

36

heuristics to help inform the program’s understanding. Heuristics were used to help
select subsets of moves to consider, decide on how deep to analyze a line of play,
and to assess a position. Simon provided the chess expertise, while Newell and
Shaw integrated this knowledge into the program.

From Newell and Simon’s writing, we know that they understood that some of the
positions considered by a minimax search were provably irrelevant: the outcome
of evaluating those positions could have no effect on the final result of the search.
Hence, they should be ignored; they were a waste of computational resources. This
idea later became known as the alpha-beta (a-B) algorithm. The historical record

is not clear as to whether Newell and Simon understood this algorithm in its full
generality to eliminate all possible irrelevant positions.

NSS pioneered the use of a high-level programming language for chess; all efforts
to date had used machine/assembly language. If programming chess was not
enough of a challenge, Newell, Shaw, and Simon had to design and implement
their own programming language! Their language, IPL (Information Processing
Language), was running in 1957 and the following year it was used to create the
NSS chess program.

The following game has Herbert Simon testing NSS.

NSS — Simon, Herbert

Irregular Closed Game DOO
Undated

1.d4 96 2.5\¢3 d5 3.%d3 b6 4.e4 A b7 5.exd5 Hxd5 6.L)f3 e6 7. Q.e2
fHe78.0e30-09.0-0 Hd7 10.Hfel ¢5 11.Hadl ¥c7 12.,4xd5 H xd5
13.24 Hac8 14.¥%c3 A.£6 15. 4 b5 A xf3 16.gxf3 Hfd8 17.4.xd7 ¥xd7
18.b3 cxd4 19.¥d2 ¥c6 20. 4.4 Wxc2 21. ¥ xc2 BExc2 22.5c1 Hdc8
23.Hcd1 Ec8c3 24.b4 Hxf3 25.0.¢3 d3 26.Hcl 485 27.Hxc2 dxc2
28.0e5 c1¥y 29.Kxcl1 H.xcl1 0-1

In 1958, NSS achieved a milestone by defeating a human player at chess. History
was made — never mind that the opponent was taught the rules of chess shortly
before the game was played. However, as quickly as NSS came on the scene

and achieved an important milestone, it just as quickly disappeared. Progress in
realizing Newell and Simon’s artificial intelligence objectives were slow and the
researchers moved on to other applications.

There is no Nobel Prize in Computer Science. To address that concern, in 1966
the Association of Computing Machinery (ACM) created the Turing Award, in
recognition of the pioneering work of Alan Turing. The 1975 winners were Newell

and Simon, in part for their artificial intelligence research that was applied to chess.

Herbert Simon had an amazing career, as he also won the Nobel Prize for Economics
(1978) and the Outstanding Lifetime Contributions to Psychology prize (1993).

Herbert Simon (seated) and Allen Newel.
(Carnegie Mellon University)

Herbert Simon (1957)
Scientist and Nobel Laureate

Within 10 years a digital computer will be the world’s chess champion unless the
rules bar it from competition.

Next on the scene was MIT undergraduate student Alan Kotok (1941-2006). He
took an undergraduate programming course from MIT junior professor John
McCarthy (1927-2011) in 1959. Fellow classmate Elwyn Berlekamp recounts that
course (Berlekamp 2016):

It may have been one of the first courses in programming that was taught anywhere
that I was aware of, in the United States at least. It was the spring of 1959 and it was
a freshman elective for which a bunch of us signed up. And McCarthy... got people
doing various projects and four of us got together and decided to write a program to
play chess.

Question: Who were the four?
Me., Kotok, [Charles] Niessen, and [Michael] Lieberman.

We divided this project up... I remember I got very excited about and did a piece that
related to searching for very quick mates... [The program] certainly made legal moves
which itself was something of an achievement... It might be ranked a beginner. All
the programmers could easily beat it.

So, we turned it in and McCarthy gave all four of us “A”s for the project. We all went

37

our separate ways except for Kotok who really became attached to this and did several
upgrades to the program. Although it started as a project in which all of us were more-or-
less equal contributors, it ended with a program that was largely Kotok’s, I'd say 90%.

Kotok and new collaborators Paul Abrahams, Robert Wagner, and B.F. Wells
continued to refine the program for a few years. It was largely written in
FORTRAN, which would become the programming language of choice for chess
programs for most of the next two decades. The resulting effort is often referred to
as the Kotok chess program in part because of Kotok’s major role in developing it,
but also because he documented it for his B.Sc. thesis.

McCarthy was in the Newell and Simon camp when it came to artificial intelligence,
so it is not surprising that the Kotok program used a Shannon Type B search strategy.
The selectivity was achieved much like Bernstein’s effort, by limiting the number
of moves considered in a position. Of historical importance was the elimination

of positions from the search that had no impact on the final result. John McCarthy
introduced this idea to the project, but it is unclear whether this was an independent
idea of his or inspired by Newell and Simon. However there is no question about
the name of the idea— “alpha-beta™ came from McCarthy. In his 1962 B.Sc. thesis.
Kotok tries to describe the algorithms (Kotok 1962):

The program was tested late in the spring of 1961. The [IBM] 709 took about 5

to 20 minutes per move, depending on the complexity of the situation. Although

the machine did not do too badly, we noted that it was looking at many irrelevant
positions. We therefore attempted to find a method of pruning the move tree, without
discarding good as well as bad moves.

Prof. McCarthy proposed a heuristic for this purpose, called “alpha-beta.” It operates
as follows: Alpha is a number representing the value of the best position which white
can reach. using a pessimistic evaluation. Beta represents the best position white can
reach, using an optimistic evaluation, due to the fact that black can hold him to this
position. Under normal circumstances, alpha starts at -infinity. and beta at +infinity.
At each level, optimistic and pessimistic evaluations are made, and compared to
alpha and beta in the following way. If a white move is optimistically less than
alpha, it is discarded, since a better alternative exists elsewhere. Likewise, if a white
move pessimistically is better than beta, it too is discarded, since black had a better
alternative previously; furthermore we revert two levels since no other white moves
are worth considering at that position. The reverse strategy is applied for black.

Can vou understand this? From this description it is hard to figure out what is really
happening. Further the alpha-beta idea is des cribed as a beuristic whereas it is in
fact stronger than a heuristic — it is a provably correct way of reducing the search
effort. Thus, although Newell/Simon and McCarthy had the right idea, it is unlikely
sither group understood the full potential of what would soon become known as the
alpha-beta (o-B) algorithm.

The program only played a few partial games —ugly chess by both sides — before

Kotok graduated. He concluded “From our analysis of the results, we have found
that in its present state, the program is comparable to an amateur w ith about 100
games experience” (Kotok 1962). A doubtful claim, to say the least.

1962: Checkers

Arthur Samuel’s checkers program (IBM) plays a six-game exhibition match against
Robert Nealey, a future Connecticut State Champion. Nealey wins the match by a
score of two wins to one with three draws. This is the first time a computer defeats
an opponent of creditable strength in an official competition.

_.UAHO ._UNNA .Owum D4
_[Ignore

Alpha-Beta Algorithm

The alpha-beta search algorithm is an enhancement to Minimax search. By keeping
track of two numbers, the best score that each player can achieve, large parts of the
search tree can be proven to be irrelevant to the final result.

Alpha-beta search can be thought of in terms of an obvious principle: once you know
you can do no better, then stop. Let us return to our two chess friends, Max and Min.
As before, consider that each position has 40 moves to consider and that a position
is evaluated solely by material. Max considers the first move and it wins a pawn. On
to the second move, which wins nothing. So far so good. Now the third move leads
to checkmate. Wonderful! What do we do now? There is no point in doing more
analysis here; we know the result. The remaining 37 moves can be ignored.

This idea can be generatized. Consider a position with Min to move. Assume that
Min analyzes the first move and finds that he loses a pawn. Clearly Min wants to do
c.maon a line of play that loses a knight is irrelevant. Min tries a move. Max analyzes
his first move and it wins a knight. Now, you might think that Max should keep
searching, hoping to win more than a knight. In fact, there is no point to doing any
more work. From Min’s point of view, this line of play is irrelevant. By playing this
move, Min loses at least a knight and possibly more. Min will always prefer to take
the move that loses the pawn to the move that loses the knight (or more).

The idea is illustrated in the following search tree. At position B1 Min (Black) knows
that the first move leads to the loss of a pawn (C1). Can he do better with the second
move? At position C2, Max (White) wins a knight by playing to D3. Now we know
that further improving this score is irrelevant to Min (Black) at B1 — Min will always
choose to lose a pawn over a knight. Hence, position D4 can be ignored. Using the
tree analogy, such branches (moves) in the search are said to be “pruned.”

O
@
Os O

o
O

OOmnw

In this example, three of the eight leaf nodes do not need to be considered (D4,
Uﬂ. M.Sa D8), a saving of 37.5%. Can you do better than that? Pretend that every
position has 40 possible moves and that a search program wants to look ahead

- 0
_w:o«m _m:oam

39

40

10 ply. The number of leaf nodes in this search tree is the staggering 10'° =
10,485,760,000,000,000. If one is fortunate enough to eliminate the maximum
possible leaf nodes, then the search tree shrivels down to the reasonable size of
10° = 102,400,000. In practice, one cannot obtain the maximum possible savings.
However, modern programs usually search within a small factor of the minimum
search tree size.

The alpha-beta algorithm is amazing. Searching 10 ply with Minimax in a
reasonable amount of computer time is not possible. If your chess program could
analyze 100 million positions in a second, then this Minimax search would take over
1,000 days to produce a result. Add in the alpha-beta enhancement and, voila, the
seemingly impossible becomes easy! The search takes one second.

Who invented the alpha-beta algorithm? There are four competing claims, but
there is not enough information available to identify a “winner.” Newell, Shaw, and
Simon certainly discussed the notion of eliminating provably irrelevant positions
from the search tree. Alan Kotok mentions the algorithm in his 1962 thesis and
credits it to John McCarthy. A 1961 short paper by D.J. Edwards and T.P. Hart
demonstrates “The a-p Heuristic.” Also, Arthur Samuel (1901-1990) had a variant
of the idea in his 1962 checkers program. In 1963, Russian researcher Alexander
Brudno (1918-2009) published a paper describing and analyzing the algorithm,
which he says he discovered a few years earlier. However, in the early 1960s the
Cold War was in full force, and Brudno’s work was not known in the West until
many years later. A formalization and thorough analysis of the algorithm did not
appear until 1975.

Alan Kotok graduated and went on to an illustrious computing science career. In
1962 John McCarthy moved to Stanford University where he became the leader of
their fledgling artificial intelligence research program. The Kotok program came

Alan Kotok (seated) programming the PDP 6 computer. Computing pioneer Gordon Bell looks on.
(ComputerHistory.org)

with him, and McCarthy tinkered with improving it. This new version is often
called the Kotok-McCarthy program in the literature.

P.H. Clarke (1963)
Chess author

Will the world champion in 2000 be a man or a machine? This was the subject
for discussion on Moscow television recently by Grandmasters [Vasily] Smyslov,
[David] Bronstein, and [Yuri] Averbakh. As might be expected, no agreement was
reached. Averbakh held that in about 35 years’ time scientists will be able to design
a machine perfect enough to compete with masters and even grandmasters and that
it will have many advantages over man. Smyslov was of a different opinion. He
compared chess with music, asserting that just as a mechanical composer could not
rival human fantasy, so a machine could not play better chess than a man.

Bronstein took a middle line, surmising that by the year 2000 there would be
separate championships for men and machines. I wonder who will be right.

Israel A. Horowitz and Philip L. Rothenberg (1963) _
Chess authors

That a richly endowed robot will one day be able to play a highly skillful game of
chess leaves no room for doubt. On the other hand, in the absence of a fantastic

super-speed electronic brain, the chess championship of the world is likely to be
retained by humans for centuries to come.

In 1965, McCarthy visited Moscow and found out about a chess program being
developed at the Institute for Theoretical and Experimental Physics (ITEP). The
team consisted of Georgy Adelson-Velsky (1922-2014), Vladimir Arlazarov,
Anatoly Uskov, and Alexander Zhivotovsky, with chess expertise from former
World Champion Mikhail Botvinnik (1911-1995) and master Alexander Bitman.
ITEP Director Alexander Kronrod and John McCarthy agreed to a four-game
correspondence match between their programs. Given the tensions between the two
countries, the match became more than just a scientific experiment; it became a
competition between the USSR and the USA.

1966: Checkers

Arthur Samuel’s checkers program (IBM) played four-game exhibition matches
against World Champion Walter Hellman and his challenger Derek Oldbury. The
grandmasters won all eight games rather easily. This was the first time that a world
champion publicly played a computer program.

The match began in November 1966 and lasted nine months. Every few days a
move would be telegraphed to the opposing side; access to computing resources
being the limiting factor. The Soviet program won by a score of two wins and two
draws. At the time it was not appreciated that the result was to portend the future
of computer chess. First, the Soviet program (which had no formal name) used

41

|

42

a Type A search whereas the Kotok-McCarthy program used a Type B. mn_%:w_.w
had its first data point suggesting which muvﬂcmn,r was better. Second, :.Hm .“n._, __91
program played two games with a search limitation of _._:m.n ply: both s.ﬂ.m. mmﬂu.
Two games were played with a five-ply limit: both were wins. Thus there was the
first evidence of a strong correlation between computational resources and chess
performance. ,
As an historical footnote, it is sad to report that Dr. T.H,aE.oa was .mn_aoﬁwn at ITEP
due to complaints that too much valuable computing time was being m.ScwzaoRa ‘
on chess. In contrast, John McCarthy won the Turing Award in 1971, in part for his

work on computer chess.

i ke .

Georgy Adelson-Velsky (left) and John McCarthy playing chess.
Perhaps this game was the human version of the USSR versus USA match.
(Semen Karpenko)

It is not surprising that with Kotok’s and McCarthy’s work on computer chess

at MIT getting some scientific exposure that a new leader So.c_a oB.onM i

Undergraduate student Richard Greenblatt (1962) recounts his start in chess an

computer chess:
1 got involved in computer chess after I visited the Stanford Ed.mﬁm_ Intelligence
Laboratory during a trip to the Fall Joint Computer Conference in November 1966,
which was held in San Francisco. I had played chess in grade mwwoor and %.oa to B
play against university students at the Student Union of the 9.:%35\ of Missourl E
Columbia, Missouri, where T grew up; but I had never played in a tournament and did
not play significantly after I came to MIT as a freshman in the fall of 1962.

At that time there was an ongoing match between the Kotok program .@HH had moved
to Stanford with Prof. John McCarthy) and a Russian program. Examining some
computer printouts, it was immediately evident to me that the standard of play and
analysis were very low, and I returned to [MIT in] Boston and Homo.Zma to do better.
After one month, I had the computer playing chess, and the following [January]

we decided to enter a human tournament, feeling then, as I still do, that human

competition is the best way to measure progress in computer chess, particularly from
the Al point of view.

Unlike previous efforts, Greenblatt was able to quickly build a complete program
(weeks, instead of many months or years). He had the advantage of Kotok’s work
as a model, as it was completely published in his thesis.

The program was given the rather esoteric name MacHack V1, the amalgamation
of three components of the work. First, Greenblatt did his work under the umbrella
of the MIT research program called Project MAC (Multiple Access Computing to
some; Machine-Aided Cognition to the artificial intelligence researchers). Second,
what he was doing with his software development was “Hack”ing, a term that had
its origins in the early 1960s MIT computer culture. Greenblatt was one of the new
generation of sophisticated computer experts. The word had none of the negative
connotations that it sometimes has today. Finally, he wrote his program to run on
the Digital Equipment Corporation (DEC) computer PDP 6 (VI). Hence the formal
name MacHacxk VI, although usually referred to simply as MacHack.

The combination of a more powerful computer, tuned program code, and the alpha-
beta algorithm allowed MacHAck to search deeper and to consider more moves in a
position than previous attempts. The standard program search was 5-ply deep. Like
Kotok’s program, at each ply it only considered plausible moves: 15 moves at the
first ply, 15 at the second, 9 at the third, 9 at the fourth, and 7 at the fifth (Greenblatt
et al. 1967). The extra breadth reduced the probability of making a catastrophic
blunder because of missing a plausible move. Leaf nodes values included the result
of a quick check for any obvious tactics (such as following all capture sequences),
often called a quiescence search.

The MacHack program pioneered two important computer chess ideas. The first
was the use of an opening book. Why compute the opening moves every game
when there were plenty of books available giving the main lines of play for each
of the openings? Larry Kaufman (then a master, and later a grandmaster) and Alan
Baisley created the opening book. Greenblatt recalls the opening book effort: “By
later standards it wasn’t so big, but at the time it was pretty good sized. I don’t
know I think it was probably 8,000 or 10,000 moves in there” (Greenblatt 2005).

The second idea was the use of a transposition table. During a search, the same
position can arise multiple times. The first time a position is analyzed, remember
the result. If you encounter the same position again later on in the search, you may
be able to use the result of the previous computation. It is an obvious observation,
but no one had yet done it. Transposition tables, named as such because the same
position could arise as a result of move transpositions, had the potential to eliminate
duplicate parts of the search.

43

Quiescence Search

| An important consideration in a chess program is when to stop the analysis of a line
of play and evaluate the resulting position. The ideal position to assess is one that is
quiet, or quiescent. Shannon already figured this out in his amazing paper:

_ A very important point about the simple type of evaluation function given

| above (and general principles of chess) is that they can only be applied

| in relatively quiescent positions. For example, in an exchange of queens
White plays, say, ¥x¥ (x=captures) and Black will reply while White is,
for a moment, a queen ahead, since Black will immediately recover it. More
generally it is meaningless to calculate an evaluation function of the general
type given above during the course of a combination or a series of exchanges.

There are several obvious rules the one might use for deciding if a position is not
quiescent: the side to move is in check, the side to move can give check, the side to
move can immediately recapture a piece, a valuable piece is en prise, and multiple
pieces are attacked (e.g., a fork). In effect, the program is trying to resolve what
looks like a forced sequence of moves. Part of the art/science of building a chess
program is deciding on the rules for determining if a position is quiescent.

Modem chess programs will search until some criterion is met (e.g., a prescribed
search depth is reached). Before doing the evaluation, a quiescence search will be
done. This search is restricted to only the moves that help resolve quiescence. The
goal is to extend the analysis until a quiet position is reached — only quiet positions
should be evaluated.

Greenblatt was ambitious and he was able to get MacHAck entered into the monthly
Roylston Chess Club Tournament in Boston. On January 21, 1967, in the first round,
MacHack VI, using the pseudonym of “Robert Q” was paired against Carl Wagner.
Wagner, with a 2190 rating, had no problem winning this historic game.

Wagner, Carl (2190) — Rosexr Q (unrated)

Irregular Opening AOD
Boylston Chess Club Tournament (1), 1967

1.g3 €5 2.,7f3 e4 3..0d4 Q.c5 4.90b3 L.b6 5.0.82 L)\ f6 6.c4 d6 7.H)c3
Ne68.d3 exd3 9.Q4.xb7 Hbd7 10.exd3 HEb8 11.£.g2 0-0 12.0-0 N g4
13.%c2 He8 14.d4 ¢5 15.0.€3 cxd4 16.)xd4 Hes 17.h3 H.d7 18.b3
H.c519.2ad1 ¥c8 20.Hh2 Ngb6 21. A g5 He5 22. 4 xf6 gxf6 23.5\e4

£5 24.0\f6+ &Bg7 25.2xd7 ¥xd7 26.5)c6 Ebe8 27.H)xe5 Exe5 28.%c3
£6 29.Hd3 He2 30.2d2 Hxd2 31.¥xd2 He5 32.2d1 &7 33.4d5 Hegb
34.b4 A.b6 35.%c2 N6 36.0.e6 HNd4 37.Hxd4 Q xd4 38. x5+ g7
39.¥ g4+ Hh6 40.%xd4 We7 41.Wh4+ g6 42. A5+ Hf7 43. % xh7+
Df8 44.Wh8+ Hf7 45. a8 ¥c7 46.%d5+ &g7 47.Hg2 We7 48.h4 Hho6
49.g4 &g7 50.h5 We2 51.h6+ Hf8 52.h7 Wxf2+ 53.Hxf2 He7 54.h8Y
a6 55.%e6# 1-0

But there was a positive note at the end of the event (Krakauer 2010):

Although we entered our first five-game tournament with high hopes, the program
lost its first four games. In the fifth, though, it arrived at the endgame in decent shape,
and the programmers decided to offer the opponent a draw. The opponent, an elderly
man who perhaps imagined that the computer would be very strong in the endgame,
accepted. In fact, the program was rather bad in its endgame play at the time, and the
opponent might well have prevailed had he persisted. Richard Greenblatt noted, in a
recent e-mail message, “The opponent was an older guy who was a local chess legend
and rated about 1400. He was also a bit of a promoter, so although the game appeared
legit, we were a bit leery about ‘counting’ it too much.”

The program finished with a score of one draw and four losses, achieving a United
States Chess Federation (USCF) rating of 1239. This was sufficient to win the Class
D championship of the tournament, and Robert Q (aka MacHack VI) received a
trophy. The era of man-machine competition was officially under way!

Greenblatt’s appetite was whetted and a few months later MacHack VI competed
in the Massachusetts State Championship. It was amazing what a few program
enhancements and bug fixes could do.

MacHack VI (unrated) — Unnamed Opponent (1510)

Iregular Sicilian B21
Massachusetts State Championship (2), 1967

l.e4 c5 2.d4 cxd4 3.¥'xd4 Nc6 4.¥d3 Y6 5.5 ¢3 g6 6.,0f3 d6 7.4 e5
8.0.83 a6 9.0-0-0 b5 10.a4 A h6 11.&Hb1 b4

12.¥xd6 A.d7 13.0.h4 Qg7 14.2)d5 Nxed 15.0)c7+ Wxc7 16.&Wxc7 Hcs
17.%d6 A8 18.¥d5 EHc8 19.5yxe5 H.e6 20. ¥ xch+ Hxc6 21.2d8+

History was made!

Lawrence Krakauer was a witness to the exciting days of MacHACK’s tournament
adventures. Here he recalls a game that illustrates the emotional side of watching
your programming creation compete (Krakauer 2010):

In the particular game I'm describing, the computer was doing quite well, and it
looked as if it would win. On the other hand, it could be weak in the endgame, so we
knew that it might not pull it off. A master-level player working with the team was
observing the game with us. I think it may have been Larry Kaufman, a student at

45

46

MIT who was a national master, but I’m not sure of that. Suddenly, he said something
like, “Wow, look at this!,” and he pointed out a mating combination for the program
—the game was won! Except, of course, there was the question of whether or not the
program would “see” the same possibility he had spotted. After all, of all the people
following the game, only he had seen it.

We ran over to the line printer, and looked at the plausible move list, which had
already been printed. The initial move of the mating combination was on the list,

of course, since all moves are on the list. But it was ranked dead last - the Plausible
Move Generator module of the program considered it to be absolutely the least-
likely move for the computer to choose. This was not surprising, since it was a queen
sacrifice. We knew that if the computer looked ahead a few ply. .. it would have been
likely to see the mating combination. But of course, you can’t see it if you don’t look,
and why waste time looking at a move that will result in the immediate capture of
your queen?

Oh, well. How could we expect the program to find a tricky mating combination that
only one observer had noticed, and he was a master-level player?

We waited for the program’s move, but the program seemed to be taking longer than
usual to do its analysis. Finally, the line printer chattered, and we knew that at the
same time, the move was being typed out at the tournament site. It was the queen
sacrifice, and the program’s board evaluation, the large positive number that we
considered to be “plus infinity,” indicated that the program had seen the forced mate,
and thus “knew” that the game was definitely won. That, in fact, accounted for the
extra time the program had taken to announce its move. Upon seeing what looked
like a mating combination, the program had evaluated all possible responses of the
opponent at each level of the look-ahead, to be certain that the checkmate could not
possibly be avoided.

We were all delighted, of course, but Greenblatt’s delight was tempered by
puzzlement. We could understand how the program had seen the mate once it had
looked in depth at the queen sacrifice, but why had it evaluated that move at all, the
lowest of the low in terms of its likelihood of success? If I'm recalling correctly,
Greenblatt actually pulled out the thick source code listing, and started looking
through the program to figure out what might have happened.

And then it hit him. There’s an old chess adage, “When in doubt, check.” The queen
sacrifice was a checking move, and the program had been written to evaluate ALL
checking moves, no matter how dubious they seemed. Nobody had particularly
noticed that the queen move was a check. I mean, we saw it, obviously, but it’s
hardly important that the queen checks the opponent when the queen is going to be
immediately captured. But it was that incidental attribute of the move that had caused
it to be evaluated by the look-ahead module, which had exposed the mate.

The phone rang. It was one of our representatives at the tournament, all upset. The
computer had been winning, he wailed, and now it’s throwing away the game by
giving up its queen! I was glad to know that I wasn’t the only one who hadn’t seen the
mating combination.

Watch and leam, we told him, watch and learn.

MacHack’s tournament career was short. Greenblatt (1992) summarized it
by saying that, “MacHack went on to play in about half a dozen human chess
tournaments. Its best results were drawing an 1880 player and beating a 1720
player. Its best performance rating in a tournament was 1820 and I believe its
official USCF rating was 1523.” In recognition of the program’s trailblazing
success, it was made an honorary member of the USCF.

Transposition Tables

Consider a search where the line of play 1.d4 d5 2.£f3 is followed by a five-ply
analysis. Later on in the same search, the program considers the sequence 1.3 d5
2.d4. The second line of play is said to transpose into the first. If the five-ply result
of the first piece of analysis has been saved somewhere, then when the second move
sequence occurs, the transposition can be detected and the five-ply value that has
already been calculated can be used.

The idea of a transposition table is intuitively obvious. Whenever you search
a position, save the position and the search result. When you come across a new
position, check to see if it has been previously searched and, if so, you may be able
to reuse the result. Note that just because a transposition has been detected does not
automatically mean one can throw away the repeated position. It might be that the
first time the position is searched to, say, a depth of five, but when the transposed
position arises, a search to depth seven is required. In this case the previous result
cannot be used.

It tums out that the analysis done by chess programs is full of transpositions. The
simple trick of not repeating a calculation can result in a large reduction in the
search effort. Depending on properties of the position being analyzed and the depth
of search, it is possible to see scenarios where the program runs hundreds of times
faster. In complex middlegame positions, the savings are much smaller but still
substantial.

Transposition tables are sometimes called hash tables, a name that describes the
implementation rather than the idea. Hashing is a computer science algorithm that
takes a chess position and “hashes” it into a number. This number is used to specify
the table row in which the position is to be stored. The search typically proceeds as
follows:

* Take the current position and tum it into a number N.
» Look in table entry N to see if the position is present.
* If present use the result to possibly end further search of this line of play.

» If not present, search this position and at the end of the search store the position
and the result into table entry N.

Clearly the larger the transposition/hash table, the more information that can be _

| saved, and the greater the likelihood that transpositions can be detected. Most chess

programs will fill all of available memory with the table.

We conclude MacHAck’s tournament record with a game showing that Greenblatt’s
fear of the endgame was well founded. In the following game, MacHAck squanders

47

48

a winning position. Note that the program is referred to as MacHack VII, a
reflection of the newer and faster computer (PDP 10) that the program was using.

Haley, Philip — MacHac VIl
Refi Opening A0S
Labor Day Open (3), Toronto, 31.08.1969

1.3 N6 2.g3 d5 3.4.82 ¢5 4.d3 D6 5. 8.4 A5 6.0-0 b6 7.5\ ¢3
Wxb2 8.%d2 d4 9.Ned Hxed 10.dxed O xe4 11.8Hfb1l W3 12.¥xc3 dxc3
13.Exb7 b4 14.5Hb8+ Exb8 15. 4 xb8 N xc2 16.Hcl Hd4 17.5\xd4
Axg218.1b5 4 h3 19. 4 xa7 £d7 20.5)c7+ HA8 21.d5 c4 22.5)xc3

e5 23.5e4 A b5 24.8b1 A.c6 25.5\¢3 H.d7 26.a4 Q.f5 27.e4 {L.c8 28.a5
R.a6 29.5b6 &8 30.0d5 £6 31.Ec6+ Hd7 32.Exa6 Hc8 33.3b6 Hd7
34.BEb8 &c6 35.0.e3 c3 36..4x¢3 1-0 (in 47 moves)

Despite MacHacK’s successes, objectively the program’s play was no better than
Class C.

MacHAck’s most famous game was not played in a tournament. In 1965, MIT
professor Hubert Dreyfus published an article titled “Alchemy and Artificial
Intelligence.” As the title suggests, it was a scathing critique of the progress made
and the potential for success of artificial intelligence research. Dreyfus singled out
the work of Newell, Shaw, and Simon. He is particularly barbed in his comments
about their progress, predictions, and reporting of results (Dreyfus 1965):

The chess-playing story is more involved and might serve as a study of the production
of intellectual smog in this area. ...

In fact, in its few recorded games, the NSS program played poor but legal chess,

and in its last official bout (October 1960) was beaten in 35 moves by a ten-year old

novice. Fact, however, had ceased to be relevant. Newell, Shaw, and Simon’s claims

concerning their still bugged program had launched the chess machine into the realm
of scientific mythology. ...

While their program was losing its five or six poor games — and the myth they had
engendered was holding its own against masters in the middle game — Newell,

Shaw, and Simon kept silent. When they speak again, three years later, they do not
report their difficulties and disappointments ... [and] gives the impression that the
[within 10 years] chess prediction is almost realized. With such progress, the chess
championship may be claimed at any moment. Indeed a Russian cyberneticist, upon
hearing of Simon’s 10-year estimate, called it “conservative.” And Fred Gruenberger
at RAND has suggested that a world champion is not enough — that we should aim for
“a program which plays better than any man could.” This output of confusion makes
one think of the French mythical beast which is supposed to secrete the fog necessary
for its own respiration.

And this is only the introduction of the paper! Dreyfus had made the astute
observation that the field of artificial intelligence, not just computer chess, suffered
from unrealistic expectations and unfulfilled predictions. Not surprisingly, this was
a message that many did not want to hear, and the article attracted few friends but

B D

many fierce opponents. Dreyfus later expanded on his ideas in the widely read book
What Computers Can't Do.

Dreyfus was a bit unlucky in that within a year of writing his paper, Greenblatt
produced a reasonably strong chess program. And, since Dreyfus enjoyed playing
chess, there was but one way to settle the score: on the chessboard. Richard
Greenblatt recounts MacHack’s most famous game (Greenblatt 2005):

Well, there was a guy at MIT in those days named Hubert Dreyfus, who was a
prominent critic of artificial intelligence, and made some statements of the form, you
know, computers will never be any good for chess, and so forth. And, of course, he
was, again, very romanticized. He was not a strong chess player. However, he thought
he was, or I guess he knew he wasn’t world class, but he thought he was a lot better
than he was. So anyway, I had this chess program and basically Jerry Sussman, who’s
a professor at MIT now, ... brought over Dreyfus and said, well, how would you

like to have a friendly game or something. Dreyfus said, oh, sure. And sure enough,
Dreyfus sat down and got beat. So this immediately got quite a bit of publicity.

Dreyfus, Hubert — MacHack VI
Italian Game C50
Dreyfus match, MIT, 1967

l.e4 e5 2.0f3 Hc6 3.8.¢4 N6 4.0 ¢3 A5 5.d3 0-0 6.5\g5 Ha5 7.4d5
¢c6 8.4b3 Hxb3 9.cxb3 h6 10.)h3 d5 11.exd5 Heg412.£3 § xh3 13.gxh3
Axd5 14.xd5 ¥xds5 15.9d2 ¥xd3 16.b4 He7 17.Hgl e4 18.fxe4
Qh4+ 19.Hg3 Q xg3+ 20.hxg3 Wxg3+ 0-1 (in 37 moves)

Although the game was not well played (especially by Dreyfus), all that really
mattered was the result. Herbert Simon (1967) was particularly sarcastic in his
response to the game:

What are the facts? A man who exhibited great zest in writing that a “ten-year old
novice” had beaten a particular chess program was himself beaten, and beaten
roundly, by MacHack. Neither fact by itself proves much about the present or future
of chess programs, but the two facts may interest and arouse emotions in persons
already passionately committed to conclusions (pro or con) on these mutters. To
protest amused comment on the MacHAck victory shows either a desire to apply the
rules of rhetoric asymmetrically, or such deep emotional involvement as to cause
blindness to the asymmetry. You should recognize that some of those who are bitten.
by your sharp-toothed prose are likely, in their human weakness, to bite back; for
though you have considerable skill in polemic, you have no patent on it.

The discussion of the philosophy and status of artificial intelligence would benefit
from de-escalation. Since you have contributed some of the most vivid prose on

the subject, may I be so bold as to suggest that you could well begin the cooling — a
recovery of your sense of humor being a good first step. You see, the real humor in
the Dreyfus-MacHAck game, as any chess player who plays it over will tell you, is
not that you were beaten, the humor is that the Greenblatt program exhibited in this
game many of the same human failings that you did (failing to see obvious impending

49

50

mates, for example), and still clobbered you by the skin of its teeth. It was a real

cliffhanger, in which one fringe unconsciousness was outdone by another. MacHack
behaved not like an “omniscient computer” (to quote you out of context), but like a
frail and sometimes desperate humanoid even, shall we say, as you and L.

Academic debates are usually not so spirited! In the end, it would be fair to say that
both sides agreed to disagree. Dreyfus was a pariah to much of the Al community
for many years. However, with hindsight, the AI community begrudgingly will
admit that much of what Dreyfus wrote was correct.

In 1992, Richard Greenblatt reflected back on his pioneering work in computer
chess (Greenblatt 1992):

We say a system is wedged if there exists a binding, a clashing deep within its bowels,
that prevents progress that you would otherwise expect. ...

Looking back, I believe the field of computer chess was wedged when I got involved
in it 26 years ago. It was not merely the state of ignorance, although that was great,
but a certain “romantic” ideal, among philosophers and mathematicians, that was
inhibiting progress. Most of these individuals were not strong chess-players, but
some were. Former World Champion Botvinnik wrote a book claiming to be about
computer chess, which devolved into a discussion of his famous combination against
Capablanca. Thus, we may say, the philosophers, the mathematicians and the chess
grandmasters of that time were all more or less equally wedged.

Much like Alan Kotok. Richard Greenblatt was given the opportunity to turn his
work on computer chess into his B.Sc. thesis. Unlike Kotok, Greenblatt never
got around to it and did not get academic credit for his groundbreaking work.
Of course, what he lacked in a degree, he more than made up for in international
recognition for his work.

MacHack was developed for the PDP series of computer, a line of products that
became immensely popular. The program was made freely available to PDP users.
To that point in time, all chess programs developed had a user community of one —
the team that developed the program. MacHack could now be played by thousands
of people.

Greenblatt’s work was a major milestone in the history of computer chess. He
pioneered the participation of computers in human tournaments. He invented new
ideas that would improve a chess program’s performance. He advanced the state of
the art in arguably the biggest leap forward in computer chess history.

Mikhail Botvinnik (1968)
Former World Chess Champion

I forecast an unprecedented period of popularity for the game. When an electronic
machine has started playing chess and played it successfully this will be such a
momentous event that every schoolboy will want to know about it. In world history,
it will perhaps fall not far short in importance of the discovery of fire.

The young will have to study not only computer technique and programming but
also chess itself. And then when a hundred times more young people study chess,

p—

when many of them devote their lives to it, then we shall have a real chance of _
getting a new generation of [Mikhail] Tals and [Boris] Spasskys. 1

While Greenblatt’s program generated considerable media and research
community interest, little was heard from the Soviet Union. The ITEP program
remained hidden behind the Iron Curtain; progress, if any, was a secret.
Nevertheless, others took up the challenge. Another Russian chess program
appeared in the late 1960s. Not much is known about it, but in 1968 it played a
game against the readers of The Ural Weekly (Uralsky Rabochny) newspaper.
Each week the program played a move, and the readers would vote on a response
(majority rules). Although the program’s play is weak, it is noteworthy that elite
grandmaster Lev Polugaevsky annotated the game for the magazine Chess in the
USSR (Shakhmanty v USSR). A selection of his annotations is included below
(Polugaevsky 1968).

Readers of The Ural Worker newspaper — Russian Procras
Nimzowitsch Defense BOO
Ural region, USSR, 1968

1.e4 Ncb

A move suggested by Nimzowitsch. It is not very popular and has almost
disappeared from tournaments, but the computer has its own ‘theoretical taste,’
which does not coincide with the conclusions of contemporary chess theory.

2.d4 d5 3.5)c3 dxe4 4.d5 He5 5.0.£4 Hg6 6.0.g3 £5?

It seems that a computer also has human weaknesses — it can be just as greedy as a
human being.

7.84b5+ 4d7 8.5 h3!

8...c6!

A natural move, but since it was made by a computer it deserves an exclamation
mark. This move bears witness to the great possibilities of the electronic chess
player. Evidently the computer is able to assess the position correctly. Black’s
Achilles’ heel is the square e6 and the computer correctly decides not to allow

51

52

the exchange of his white-squared bishop, which is the only piece defending that
square.

9.8.c4 Wb6 10.&d2 ¥c5

The computer is alert. It avoids the trap prepared by the humans: 10.. .c‘o.,o 11.5a4
and the queen has nowhere to go. The computer also refuses the *Greek gift’ — the
pawn on b2: 10...&xb2 11.8b1 ¥a3 12.Exb7 with an overwhelming advantage for
White. Who could say after this move that the computer thinks in a primitive way?

11.dxc6 H.xc6 12.0.e6! Hh6

What would a chess player have played in this position? He would have chosen

the lesser evil: 12.... 5d8 13.4f7+ &xf7 14.%xd8 h6, but the computer cannot part
with the exchange. We should note however that the computer’s combinative ability
is not too bad: it saw the piquant variation: 12.... h6 13.0-0-0 £f6 14.8.c7 and then

15.%d8+.

13.0-0-0 He5 14.0g5 Nho6g4s 15.£3 g6

It has to give up the knight. The fight is over, but the computer (like some chess
players) does not like resigning in time.

16.fxg4 g7 17.8.xe5 xes5

This leads to an attractive finish. ... Could the computer have seen the final
combination? Perhaps, but even a computer is entitled to count on his opponent’s

mistakes...
18.%d8+ Hxd8 19. 47+ 1-0

Such experiments of pitting a chess player against a voting audience had been done
before. However, this was a first for computer chess.

_ Horizon Effect

What happens when a program is told to look ahead a fixed number of moves?
Trouble. The horizon effect is the colorful name given by Hans Berliner to the
phenomenon of a computer playing an obviously bad move because of its :B:m.a
search horizon of vision. Consider the following position and assume that Black is
only searching three ply ahead.

&Q

v

Y

_. Black is in check but has a massive material advantage. The correct sequence 15

1..%&g8 2.8xh8 ®xh8 — but Black loses a queen for a bishop! This is a terrible |
result, hence the program searches for something better (within the three-ply
horizon).

1...c3 The program sees that ¢3 2.8.xc3+ &g8 gives up only a pawn. This is a much
better result than the line above. The material advantage is preserved.

2.8.xc3+ d4 Again, a three-ply search only loses a pawn.
3.Q xd4+ e5 And another pawn is lost. Black is still “winning.”
4.Q xe5+ g8 5.4 xh8 and White wins.

Having a fixed depth at which to stop searching clearly is wrong. Hence,
considerable effort was devoted to identifying when to extend the search. For
example, a common heuristic used is to never stop searching in a position where a
piece is en prise. That would have solved the problem shown above but, of course,
more such rules are needed.

In 1957, Herbert Simon predicted that chess programs would be world-
championship caliber by 1967. That milestone came and went without much note,
except perhaps by Hubert Dreyfus. But a new prediction soon came forward.

David Levy was a young master chess player with an interest in computing science
and artificial intelligence. The confidence of youth met up with the over-optimism
of research (Levy 2005):

In August 1968 John [McCarthy] and I started a bet that became a milestone in
computer chess history. We were at a cocktail party in Edinburgh during one of the
machine intelligence workshops organized by Donald Michie who was founder and
head of the first AT university department in Britain. During the party, John invited me
to play a game of chess which I won. And when the game was over, John said to me,
“Well, David, you might be able to beat me, but within 10 years there’ll be a program
that can beat you.” And I was somewhat incredulous at this suggestion.

I’d recently won the Scottish championship and it seemed to me that programs had a
very, very long way to go before they got to master level. I knew of course of John’s
position in the world of AI for which [had the greatest respect, but I felt that he
simply underestimated how difficult it is to play master level chess and I was also a
bit brash and I’ve always had a tendency to make somewhat large bets. So I offered

to make a bet with John that he was wrong and he asked me how much I wanted to
bet and I suggested £500 which at that time was a little more than a thousand dollars. -
Now to put that into perspective, in those days I was in my first job after graduating
university and the bet represented more than six months’ salary for me.

So John wasn’t quite sure whether to take the bet so he called over to our host, Donald
Michie, for advice. And Donald was sitting on the floor a few feet away from us and
he asked Donald what he thought. And Donald immediately said to John, “Could

1 take half the action?” And that of course gave John a lot of confidence and so we
started the bet, we shook hands, and that’s how it started with each of them betting me
£250 that T would lose a match to a computer program within 10 years. Later the bet
grew bigger. The following year, [MIT researcher] Seymour Papert and [scientist and

53

computer chess program developer] Edward Kozdrowicki joined the list of opponents
and the final amount at stake when we ended the bet was £1,250. But I had never felt

that I was going to be in any trouble.

Eﬁecccﬁomwv 7_
Computer 7

I'm sorry Frank, I think you missed it. Queen to bishop three, bishop takes queen,
knight takes bishop, mate. \;

At the end of the 1960s, academic interest in building chess-playing computer
programs was high. In part this was a consequence of the media and academic
attention that Greenblatt’s work attracted. The result was several North American
computer chess efforts being launched. This work needed a catalyst to increase
the efforts invested in the project, attract sponsors, bring in research grants, and
advance artificial intelligence research. All this came together in 1970.

Middlegame

54
55

56

3

2000 (1970-1978)

The publicity generated by MacHack helped increase the level of interest in
creating chess-playing programs. Tony Marsland, a graduate student at the
University of Washington, enjoyed playing chess and this interest motivated
him write a chess program. After graduating, he went to Bell Telephone Labs
in New Jersey where he continued tinkering with his program in his spare time.
He came up with an idea for helping to popularize computer chess research

at the upcoming Association for Computing Machinery (ACM) conference
(Marsland 2007):

... I wrote to Monty Newborn, who was working at Columbia University in
Manhattan and was an organizer for the upcoming ACM Fall Joint Computer
Conference, suggesting that we provide some kind of a Computer Chess Exhibit. I
had in mind a demonstration of computer vs. human play. Instead, Monty came up
with a better idea of a computer chess tournament and we met with Keith Gorlen
and David Slate (Northwestern University) in a Howard Johnson’s cafe on the
Garden State Parkway and hammered out a proposal that Monty took to the ACM
for their blessing...

And so was born the 1970 ACM Computer Chess Tournament. This event was
meant to generate publicity for computer chess, help foster and support research
in this area, facilitate the exchange of ideas, and benchmark the progress of
developing strong chess-playing programs. In the end, the event was a tremendous
success and became an annual event through to 1994. It was soon renamed as the
North American Computer Chess Championship. The 1970 event was the start of
a 25-year experiment that documented the gradual improvement in the playing
abilities of chess computers.

The first tournament attracted six entrants. Of interest in the lineup was Hans
Berliner, then a Ph.D. student at Carnegie Mellon University. He was a strong over-
the-board chess master, and was the World Correspondence Chess Championship
from 1965-1968. In 1956 he won the Eastern States Open, ahead of a promising
Junior player named Bobby Fischer. Berliner was the first strong chess player to
write a chess program — in this case J. But (Just Because It Is There) was the first
program he had ever written!

MacHack was noticeably absent from the lineup. Greenblatt explains why his
program did not participate (Van den Herik and Greenblatt, 1992):

Basically I was not particularly excited by the idea of computer-vs-computer chess.
That plus the fact that I was busy at that time I think are the two reasons. I felt then
and I still feel now to a great extent that it is better for the field if anybody can go to
the local tournament and play any time when ready. The whole thing, where there
is an event once a year, and you come in and play 4 or 5 games, is not a particularly

positive situation. But on the other hand I also understand that from the point of view
of sponsorship and people’s interest and so forth, maybe that helps promote the game
and promote computer chess.

Max Euwe (1970)
Former World Chess Champion

The question is not merely whether a computer can be taught to play chess, but
whether a computer can replace human perception to any great extent. If it is
possible to arrive at an answer using chess as an example, a great contribution will
have been made to the understanding of how the mind functions.

The first game to finish achieved one of the tournament’s goals immediately —
publicity. Programming errors resulted in the MarsLanD CP quickly succumbing to
J. But (Marsland 2007):

The first ACM ...Computer Chess Championship took place in New York. Meanwhile
I was busy driving across the continent (probably I was in North Dakota when

the first round started). However, I had arranged with my local sponsors [to have
someone operate the program for me]. I am sure he would have had a happier time
had [the MarsLaND CP] performed better, but at least we recognized the value to the
advertising world of a New York Times headline like “Computer Loses in King-sized
Blunder”! Any mention of computer chess in the [New York Times] was better than
none, I guess.

The participants quickly realized another goal: the exchange of ideas. David Levy,
who started in 1971 to be the guest commentator at the ACM events, observed this
first hand (Levy, 2005):

And one of the things that was very noticeable to me very quickly was the friendly
atmosphere at the toumaments, in which the programmers would chat to each other
while the games were in progress and between rounds. And they would get ideas
from each other. So that after each tournament, the programmers would go away not
only with more knowledge about their own programs, but with knowledge about

how other people were doing things. And this, in my view, was the main factor in
increasing the strength of programs steadily year on year. It was just an acquisition of
important knowledge by most of the people in the field. So I think the importance of
these tournaments cannot be underestimated in the whole history of the progress of~
computer chess.

The tournament was won by Cress 3.0, developed by a team of students at
Northwestern University. The program’s win was decisive, not only by winning

all three of its games but, more importantly, the quality of its play was noticeably
above that of the other entries. This program, often called CHEss X.Y to avoid having
to remember their numbering scheme, was to dominate the annual computer chess
tournament for a decade.

57

58

| S -

Program | Authors || | Score
Cuess 3.0 Larry Atkin, Keith QHKP David Slate | 3-0
. gﬂow R Oam? Ken King . 2-1
'COKOTI | Dennis Cooper, Ed Kozdrowicki ~ 1%-1% |
J. Bur _ Hans Berliner 1/-17 |
SCHACH { Franklin Ceruti, Rolf Smith - |TN B
0-3

MarsLanp CP _ Tony Marsland

Cess 3.0 wins the st ACM Chess Championship, 1970. .
Left o right: Monroe Newborn, Larry Matsa (ACM President), David Slate, Larry Atkin (Ciess 3.0), and Ben Mittman
(Northwestem University). (Monros Newbarn)

In 1968 undergraduate students Larry Atkin and Keith Gorlen wrote a o_unmm program.
Physics graduate student and 2050 USCF rated player David Slate _u.um_.m of this wm.on
and wrote his own program. In 1969, the two teams joined forces with the resulting
effort named Cugss 2.0. In 1970 Gorlen left Northwestern University and the Cress
team (although he stayed in touch and occasionally made contributions).

chm_.;,mmor»wGSNv 7
Former World Chess Champion 7

Up till now they've only had computer scientists developing such programs, and
they won’t get anywhere until they actually involve some good chess players. i

David Bronstein (1973)
Grandmaster 7

7 E_._mﬁ«dq%ocEmmgmm%mnas_gﬁfdnHnumr:ww._w an_.:amiwwn.:ombEm%o:w%
with people is one of the most marvelous wonders of our 20th century! :

Tg—

There was nothing unusual about the early versions of the program. Yet it showed
complete dominance in winning the first three ACM tournaments. Larry Atkin and
David Slate (1977) described CuEss 3.6 as:

...the last in a series of evolutionary changes to our original chess program, written in
1968-1969, and it faithfully carried most of the original design deficiencies. CHess 3.6
was, like the dinosaur, a species about to become extinct. Basically, a Shannon Type

B program, it had a depth-first [alpha-beta algorithm], more-or-less fixed depth tree
search. A primitive position evaluation function scored the endpoints and also doubled
as a plausible move generator earlier in the tree by selecting the “best #” moves for
further exploration. Rudimentary as they were, CHess 3.6°s evaluation and tree search
were just adequate to make “reasonable-looking” moves most of the time and not
hang pieces to one- or two-move threats. Apparently this was enough to play low class
C chess and, for a while, to beat other programs.

Samuel Reshevsky (1973)
Grandmaster

Until you can engage a grandmaster of high repute, the computer will never get
anywhere.

In 1973, faced with the prospect of trying to make incremental improvements to
the program’s code that had become increasingly messy over the years, Slate and
Atkin opted for a complete rewrite and a new tree-searching strategy. This change
to the search algorithm, although cosmetically simple and suggested by Claude
Shannon almost 25 years previously, had profound ramifications for the future.
Their reasoning went as such (Slate and Atkin, 1977):

... CHess 3.6 had a plausible move generator based on its evaluation function. ... At
first we were going to implement a similar scheme in Cuess 4.0. However, with only a
month or two remaining before the [1973 ACM] tournament, we changed our minds.
Although our plausible-move generator sounded plausible enough, and differed not
very much from methods employed in several other chess programs, we had built up
profound dissatisfaction with it over the years. A suggestion by Peter Frey triggered
some thoughts on this matter, and as a result we dumped selective searching in favor
of full-width searching, ostensibly a more primitive algorithm.? In CrEss 4.5, all legal
moves are searched to the same depth. Beyond that depth, only a limited “quiescence”
search of captures and some checks is conducted. ...

The principal motivation for switching to full-width searching was a desire for
simplicity. Simplicity was important to ease the testing and debugging that had to be
crammed into a short period of time. The easiest way to avoid all the complexities
of generating plausible moves is to do away with the plausible-move generator. The
trouble with plausible-move generators is that they have to be very clever to avoid
discarding, at ply 1, good moves whose merit even a meager 5-ply search would
discover. This is true for both tactical and strategic moves. Thus a move that appears
“quiet” (to a naive plausible-move generator) at ply 1 may pose a threat at ply 3 and

59

60

win outright at ply 5. With CHess 3.6, and other Shannon Type B programs, whether
the right move is played often depends on whether, by sheer accident, that move is
inadvertently included in the “best n,”” n being about 8 or so moves, at the base of
the tree. ...

The notion of considering all moves had, of course, been discussed by researchers
going back to Shannon (his Type A approach). Usually this idea was met with
derision since it was clearly not how humans approached game-tree searching.
Further, the combinatorial explosion of possible scenarios seemed to make the idea
impractical. Slate and Atkin were willing to try it. They did not have to wait long to
get feedback on the idea (Slate and Atkin, 1977):

The implementation of full-width searching had immediate beneficial results. At last
we had a program whose behavior we could explain simply. When it searched to 5
ply it found everything within that range, including both tactical combinations and
positional maneuvers, some of which were obscure and ingenious.

Besides simplicity, a full-width search rewards its creators with “peace of mind.” The
following daydream (or nightmare) illustrates the psychological hazards associated
with the standard “best " tree-search approach.

Imagine yourself at a computer chess tournament. In a complicated position your
program has the opportunity to shine by finding the right continuation or to embarrass
you by making a blunder. You are reduced to a mere agent of the machine —
communicating moves between it and its opponent and reporting the time on request.
While anxiously waiting for the machine’s decision, you speculate about what move
it will make. It is difficult to infer the program’s thinking processes. By combining

an estimate of the machine’s ability with an analysis of the structural features of the
position you decide that:

1. The program will very likely make the right move.
2. The program will very likely make the wrong move.

3. The machine’s move will depend on seemingly irrelevant factors that are difficult
to estimate.

In Cases 1 and 2 the suspense is relieved — one has peace of mind. Case 3, however,
is hard on the nerves. Often one likes to be surprised by one’s program, but not in
positions where there is something straightforward to be done. A fuli-width search
sharply reduces the number of incidents of Case 3 by eliminating the “seemingly
irrelevant factor” of whether a tactically crucial move at a low ply level happens to lie
just within the best-n group or outside of it.

From the debugging point of view, things were enormously simplified. If one did
an n-ply search and did not find the winning combination, all you had to do was
play out the move sequence to see if it should be found in » ply or less. If so, then
this probably indicated a programming problem. As computer chess programmers
discovered over and over. sometimes there was bug in their code, but equally likely
was their inability to do chess analysis (and count ply)!

Another innovation in the CHEss series of programs was iterative search. For its
decision-making process, the program would search to a fixed depth. This depth

limit was set at the start of the search and, for many programs, was the same depth
for all searches. However, some searches are easy (there is one obvious best move)
and others are more difficult (many promising moves to choose from). The former
might result in & 5-ply search that takes a few seconds, while the latter might be
many minutes (using 1970s computer hardware). How do you choose a search
depth that refiects the amount of effort required?

The idea of iterative search is to keep increasing the search depth until sufficient
time has been used. The Northwestern program would do a 1-ply search. Once
completed and assuming they still had more time in which to make a move, they
would repeat the search but this time to a depth of 2 ply. Again, if the search
completes and there is more time available, try doing 3 ply, and so on. Thus the
final search depth does not have to be set in advance: the program keeps going until
a time limit is reached.

Another important idea used by the Northwestern team was “bit boards.” The idea
Is to use one computer bit for each square on the board — 64 bits of information, or 8
bytes. Bit 0 might represent the square al; bit 1, a2; bit 3, a3; and so on with bit 63
representing h8. By manipulating the bit board with logic operations — Boolean and,
or, not, exclusive-or. and shift — new information about the current position could be
efficiently computed. For example, consider generating all the legal moves for the
white pawns. If one takes a bit board representing all the white pawn locations (e.g..
a2, bit 1, and c2, bit 17), shift the bits to the left one position (effectively adding one
to each), and then logically “and”ing it with a bit board of all the empty locations
(turning bits off for locations that are occupied), then one has a new bit board
showing all the legal one-square-forward moves by white pawns.

Bit boards can be used to quickly compute many properties on the chessboard.
Some of the more popular uses of bit boards include move generation (what are
the set of legal moves), king safety (determining the squares near the king that
are under attack), and evaluating pawn structure (finding doubled, isolated. or
backward pawns).

Iterative Deepening

The idea of iterative deepening (ID or iterative search) is to repeat a search over and
over again, each time increasing the search depth. This is a counter-intuitive idea
since the only thing that matters is the result of the final completed search; the earlier
searches represent repeated/wasted effort. So what is the appeal of iterative deepening?

There are four important observations one can make about the importance of iterative
deepening:

(1) The early search depths are irrelevant. Assume that adding one to the search

n depth increases the search time by a factor of § - e.g., searching to depth 5 takes

10 seconds, but to depth 6 takes 50. The vast majority of the time is spent in the
last iteration. In this example, the time taken by the searches to depths 1, 2, 3, 4,
and 5 is dwarfed by the cost of the 6-ply search.

(2) Time control. Given a fixed amount of time, ID allows the program to find the
_ maximum search depth achievable. Most programs use ID to decide when to

61

62

stop searching. For example, in the scenario above, should the program search 7
to depth 7 if it has to make a move in at most a total of two minutes? If depth 6

| takes 50 seconds and it might take a factor of 5 to reach depth 7, then there is no
point in starting the search — it is unlikely to complete in the time required.

(3) Move ordering. The alpha-beta algorithm is most efficient (builds the smallest
_____ search trees) when it considers the best move first. In older programs, a plausible
f move generator would be used to order the moves; more often than naught the
_ best move was not in the #1 position. But ID solves this. The results from the
_\ I-ply search are used to order the moves for the 2-ply search, and so on. In
7 most cases, the best move from an n-ply search is the best move for the n+1-ply

search. Thus, even though ID does additional (smaller) searches, the information
gleaned from this work usually makes the overall search effort less than had ID
not been used!

(4) Results from an earlier search can be used in a later search. Whenever a position
is searched, the best move found can be saved in the transposition table. When
that position is reached again, possibly on a subsequent iteration (larger search
depth), the best move can be retrieved and searched first — it was best previously,
so it has a good chance of still being best.

Iterative deepening helps the program manage time and also improve search
efficiency. Further it is simple to implement. It is a winner all around!

The name iterative deepening appears to have been first suggested by Jim Gillogly,
the author of the TecH chess program, a many-time competitor in the ACM
% tournaments.

Slate and Atkin (1977) succinctly capture the frustration they felt in developing
their series of chess programs in the 1970s: “The lack of programming tools

has plagued the whole field of computer chess. With the proper tool one might
accomplish in a day a job that had been put off for years.” The truth is that 40 years
later, their comment is still valid!

The above program enhancements (added at various times throughout the 1970s)
and the later move to a fast computer (a Control Data Cyber machine, one of the

fastest commercial computers of that era) allowed the CHEss X.v programs to stay
consistently ahead of the rest of the competition at the ACM tournaments::

1970: Chess 3.0, first (3 wins, 0 draws, 0 losses)

1971: CHEss 3.5, first (3 wins, 0 draws, 0 losses)

1972: Cuzss 3.6, first (3 wins, 0 draws, 0 losses)

1973: Chess 4.0, first (3 wins, 1 draw, 0 losses)

1974: CuEss 4.2, second (3 wins, 0 draws, 1 loss — to RiBBIT)
1975: ChEss 4.4, first (4 wins, 0 draws, 0 losses)

1976: Cuess 4.5, first (4 wins, 0 draws, 0 losses)

1977: CHess 4.6, first, tied with Ducngss (3 wins, 1 draw, 0 losses)

1978: CHess 4.7, second (3 wins, 0 draws, 1 loss — to BELLE)

1979: CuEss 4.9, first (3 wins, 1 draw, 0 losses)

It is remarkable how consistently well their program played over the first 10 North
American Computer Chess Championships (1970-1979). Given the small number
of games in each event, the closeness of the competition in terms of playing
strength, and the presence of programming bugs, their dominance is a testament to
Slate’s and Atkin’s innovative ideas, careful programming, and attention to details.

Killer Heuristic

Pretend in some position White plays the move ¥f5 and it is refuted by Black’s fork
£d6. £d6 is said to be the “killer” move for &f5. Now assume sometime later in
the search, in a different position, White plays #f5. The program has not seen this
position before and does not know what move is best for Black. The idea behind the
killer heuristic is the following reasoning — £Yd6 refuted ¥f5 before, so maybe it will
do it again. Hence, the program tries 2d6 first, if it is legal in the position.

The killer heuristic is just that, a heuristic. It knows that $Yd6 worked before and
hopes that it will work again. The heuristic does not take into account any of the
surrounding context. For example, in the first instance, £d6 may have been a
checking move, resulting in a win of the queen. In the second instance, Hd6 may be
a bad move because the square is attacked by a pawn.

Regardless, given a position with no information as to what move to try, some
knowledge is better than no knowledge. Slate and Atkin (1977) characterize the idea
as “basically an inexpensive attempt, based on superstition, to find a quick refutation
move.” They did not invent the idea, but they helped popularize it.

The program was also successful in human tournaments. In 1974 Chess 4.0 played
in an event held at Northwestern University. In a field of 50 players, it scored 4%
out of 6 with a performance rating of 1736. By the end of 1975 it had a USCF
rating of 1572. In other words, it was not yet clear whether the Northwestern
program has stronger than MacHAck.

In 1976, all doubt was removed. CHess 4.5 played in the Class B (1600-1800
ratings) section of the Paul Masson tournament in California. Peter Frey (1978)
recounts that the program:

...played against 5 human opponents with USCF ratings between 1693 and 1784.
The program had a perfect 5-0 score. Nobody was more surprised at this outcome
than the authors, David Slate and Larry Atkin. They have consistently maintained
that the program is about C class in strength. One of the human opponents at the
Paul Masson tournament remarked that the program was the “strongest 1572 player
that he had ever seen.”

63

64

David Slate (left) and Larry Atkin af the 1975 North American Computer Chess Championship
(Monroe Newborn)

Ctiess 4.5 — Chu, Herbert (1784)
Owen’s Defense BOO
Paul Masson ACC California (5), 25.07.1976

l.e4 €6 2.d4 b6 3.3 Ab7 4.2\c3 A b4 5.2d3 H)f6 6.0.85 h6 7.4.xf6
¥ xf6 8.0-0 g52! 9.%d2?

White just completes the development and misses the very strong 9.5b5! ¥dS (9...

£26 10.c3 Le7 11.5d2 ¥g7 12.5c4) 10.c3 fe7 11.a4 g4 12.6d2 Hg8 13.f4 a6

14.5a3 Shchekachev-Bacrot, Calatrava 2006, in both cases with a strong initiative.

9...£¢c6 10.a3?! Q.e7 11.53b5?! Now this comes too late.
11...8.d8?! After the natural 11...0-0-0, Black is much better as
12.e5?! This does not feel right, but Black is probably still slightly better anyway.
12...¥g7 13.%e3 a6 14.5)c3 g4 15.H el Qg5 16.f4

...g4 is coming.

So far Black’s strategy has worked well, but now comes the crucial phase.

16...0.€721 16...gxf3 17.%xf3 0-0-0 is even better as 18.%xf7? runs into 18...&%xf7
19.Bxf7 &ixd4 —+ .

17.£5?

White is not ready for this advance yet. After 17.9e4 d5 18.exd6 cxd6 19. c3, heis
slightly better as Black’s king has problems finding a safe harbor.

17...exf5? Both miss the very strong 17...%g5!, after which Black is clearly better.
18.Q xf5

18...3xd4?
This runs into a powerful shot. The normal 18...0-0-0= was called for.
19.Q.xd7+! Fxd7 20. & xd4+ Hc8 21.20d3 Hb8?

After this slow move, the computer gives Black no chance and controls the game.
21...Ed8 22.%f4 Ed7 was the last chance to fight.

22.%d7 ¥g5?

This just gives up a pawn. 22...g3 23.h3 and 22...2f8 were more tenacious.
23.Bxf7 ¥e3+21 23, ..g3 offers more resistance.

24.%h1 A ds8 25.¥xg4 25.Hell?+-.

25...&a7 26.e6 N.g5?! 27.Hel Hhg8 28.Exe3 A xe3 29.1g7 Hafs 30.h4 1-0

With a 1950 performance rating, Chess 4.5 now had a USCF rating of 1822. Why
the sudden improvement? As much as the program creators would love to say-it
was the result of brilliant ideas, thorough testing, and careful programming, the
answer in this case was simpler. No doubt all of the above contributed. but the real
reason was the move to a Control Data Corporation (CDC) 170 computer. This was
one of the fastest commercial computers in the world, and allowed the program

to do an unprecedented amount of searching for each move decision. The days
ow 5-ply searches under tournament conditions were coming to an end. The faster
computer and better search algorithms allowed 6-ply in the middlegame and deeper
in endgames. Deeper searching clearly enabled stronger play. But what was the
value of an extra ply of search? It would be a few years before that question was
answered.

6

5

66

The following year CrEss 4.5 played in the Minnesota Open Championship. Its
impressive score of five wins and one loss included the first tournament victory
over a player with a 2000+ rating.

Chess 4.5 — Fenner, Charles (2016)
Sicilian Defense B42
84th Minnesota Open (2), 19.02.1977

1.e4 c5 2.)f3 €6 3.d4 cxd4 4.5\ xd4 a6 5.c4 HNf6 6.4.d3 ¥c7 7.0-0 A.c5
8.0)b3 a7 9.2)¢c3 Hc6 10.£.g5 HNes 11.4 xf6 gx£6 12.¥e2 d6 13.Fh1
Nd7 14.f4 Hxd3 15.%xd3 0-0-0 16.Zad1 H.c6?!

The beginning of a wrong plan. 16...h5 is more in the spirit of the position as .
17.%xd6 Wxd6 18.Exd6 h4 19.h3 £.c6 20.Bxd8+ Exd8 gives Black compensation

for the pawn.

17.f5 4. b8?! 18.g3?!

Slightly weakening. 18.&h3 is more precise.
18...h5 19.fxe6 h4?

19...fxe6 20.50d4 £d7 limits the damage.

20.8xf6?
Very greedy. 20.5d5 wins, e.g., 20...8xd5 21.cxd5 Aa7
20...hxg3?!

This is too ambitious. After 20...fxe6 21.50d4 (21.Exe6 is met by 21...d5) 21..
#g7, Black is not worse.

21.¥xg3 Objectively 21.Exf7! is better, but very messy, e.g., 21...&b6 22.2d2
Hdg8 23.%d4 and White is for choice.
21...Hdg8?

Based on a miscalculation. After 21...fxe6 22.EBxe6 {7, Black has more than
enough compensation for the two pawns.

22.8Bcl Ac5 23.0d4+-.

22.exf7! The computer shows tactical alertness.
22... 9 xf7 22.. Hxg3?! 23.f8%+ Hxf8? runs into 24.Exf8+ &d7 25.8{7++-.

23.8xf7 Bxg3 24.,20d5 Fenner offers a draw, which is declined.
24...Qe8?

Desperation. 24...Egh3 is necessary.

25.0b6+ Hd8 26.Hxb7 A.c6 27.Exb8+ Hc7 28.Hc8+ Hxc8 29.hxg3
Q.xed+ 30.%gl Eh8 31.0d5+ Hc6 32.5H2a5+ 1-0 A very good game by the
machine for those times.

The only loss was to a player rated 2175. With a 2271 performance rating, the
chess and computer-chess worlds were stunned to realize that master-rated chess
programs were not that far off.

The highlight of 1978 was the Twin Cities Open in Minneapolis. CHess 4.5 blitzed
the field, winning all five games. The program’s USCF rating climbed past the
magical barrier of 2000. With a 2014 rating, Cuess 4.5 held the official title of
Expert.

And then there was speed (blitz) chess. In March 1977, CEss 4.5 scored 2 points
out of 4 in an exhibition blitz match against David Levy, a 2300+ performance
rating. This was followed up in September with an exhibition game in London
against Grandmaster Michael Stean (2485). User interfaces were not as user
friendly then as they are today, so Levy acted as the conduit for transferring the
computer’s moves from the screen to the chessboard. Stean was given five minutes
for the game; the program had five seconds per move (because of the user interface
issue) and would forfeit if the game did not end by move 60.

Chess 4.6 — Stean, Michael (2485)
Owen’s Defense B0O
Blitz game London, 18.09.1977

1.e4 b6 2.d4 Qb7 3.5\¢c3 52!

Experimental. 3...e6 is the main move.

4.dxc5

A good choice under the circumstances. 4.d5 scores better in human games.
4...bxc5 5.8.e3 d6 6.4 b5+ NA7 7.0)f3 €6 8.0-0 26 9. A xd7+?

A mistake that reduces White’s potential. After 9.£8.a4, White’s lead in am<m_O@BoE
is very dangerous.

9..%xd7 10.%d3 He7 11.Ead1
Stean: “The damned computer has one of my pawns.” But he does find a defense.
11...2d8 12.¥c4?

This and the next moves show that the computer has no concrete idea of how to
play the position. 12.90d2 £c6 13.4f4 Se7 14.%¢3 0-0 15.£b3 applies much more
pressure.

12...0g6 13.Hfel? 13.4xc5? is met by 13...&c6—+.

67

68

/N

13...8.e7 14.%%b3? White should try to halve the bishop pair with 14.8.g5.
14...%c6 15.&Hh1?

An odd move. White should not waste time and continue the initiative with 15.2d2
but Black is better also in this case.

15...0-0 16.4.g5 Qa8 16...4xg5 17.5xg5 h6 18.£f3 Eb8 is more precise.
17.8.xe7 Hxe7 18.a4 EbS8 19. a2 Hb4 20.b3 White’s queen looks very odd

now.

20...f5 21.5\g5 fxed 22.5\cxed

22.. . Bxf2?

Flashy, greedy and wrong. After 22...d5 23.5g3 Ef6 24.c3 HEg4 Black has a strong
attack coming up.

23.Hxd6?
Also too greedy. Stopping the attack first with 23.®g1 is called for.
23... %% xd6?

It is better to sacrifice the exchange or a pawn with 23...%c¢7 24.82dd1 (24.2xf2
Wxd6 25.c4 DS 26.Bxeb WfS) 24...Hxed 25.5xe4 Bf4 with compensation in both
cases as a result of White’s offside queen.

24,0 xd6 Hxg2?

This is “easily” parried by the machine. 24...h6 25.ged Axed 26.DHxed Exed
27.%b1 Bg4 28.8g1 Hed 29.%d1 £f5 is much more active and gives practical
drawing chances.

25.5\ge4 Hg4 25.. Bxed 26.5xed Bgd 27 %a3 Axed+ 28.Exed Exed
29.8xc5+-

26.c4 5 27.h3 Stean: “This computer is a genius.”
27...2g3+?1 27...5Hxd6 28.hxg4 Hxed offers more resistance.
28.%h2 Stean: “Help.”

28...Hxed 29. %12 h6 29.. Hxel? 30. &7+ Hh8 31.&18+
30.5\xe4 Hyxed 31. %13

? N \

The computer knows no fear and sees no ghosts.

31...2b8 32.Hxe4 Bf8 33.%g4 A xed 34. ¥ xeb6+ HhS 35.%xed Hf6
36.%e5 Hb6 37.%xc5 Exb3 38.%c8+ Hh7 39.%xa6 1-0

This was the first time that a grandmaster had lost to a computer chess program. It
was a watershed year for CHess 4.6, defeating GM Robert Hiibner and IMs Hans
Berliner, Lawrence Day, and Zvonko Vranesi¢ at speed chess.

Another milestone was reached when CHEss 4.6 won against United States
Champion Walter Browne in a game played in a 44-board simultaneous exhibition.
With another grandmaster scalp to the computer’s credit, it was now just a matter of
time before grandmasters would lose at tournament time controls.

Then there was the idea of creating a man-machine chess-playing team. David
Levy recounts of an interesting game played at the 1979 ACM tournament:

The game against Slate playing in combination with [CrEess 4.9], that was the first
example of what is now called advanced chess. And it was interesting because it was
an innovation at the time to have a chess master playing against a program together
with a human chess player. The idea was that both the program and Slate were weaker
than me, but the idea was to see whether together they could make a formidable pair.

I don’t remember the game itself, but I remember that it was quite easy for me to win.
But what’s interesting is that about 20 years after that, Kasparov came out with the
idea of, as it’s now called, advanced chess, with a strong grandmaster plus a chess
program, against another strong grandmaster with a chess program.

Meanwhile, on the other side of the planet, the Russians had not abandoned their
interest in computer chess. Mikhail Botvinnik continued to report that he was
working on a program, but little of substance on what he was doing reached the
West. However, the ITEP program made famous by the 1966-1967 USSR-USA
match was still of interest to Russian scientists. In 1971 Arlazarov and Uskov
worked on a successor program, and were joined by an experienced programmer,
Mikhail Donskoy (1948-2009). Now working at the Institute of Control Sciences in
Moscow, the team felt confident enough in their program that in 1972 they braved
exposing it to the public. A two game correspondence match was played between
the program and the readers of Komsomolskaya Pravda, the youth newspaper

for the All-Union Leninist Young Communist League. Moves were played once

a week, with the move receiving the most votes from the readers being the one

69

T

selected. A journalist at the newspaper suggested a name for the program — Kaissa
after Caissa, the goddess of chess. Donskoy (undated) recounts:
The match took almost a year — from January to November — and ended in victory
for [the] people with a score of 1.5 to 0.5. Those who remember the hot summer of
1972 envied the authors of Kaissa who spent a couple of days a week in an air-
conditioned machine room — the coolest place in Moscow.

Kuissa — Readers of Komsomolskaya Pravda

Sicilion Defense Rossolimo Variation B50

Correspondence match (1), 1972

1.e4 ¢5 2.5 ¢3 Hc6 3.0f3 d6 4.8b5 £.d7 5.0-0 g6 6.d4 cxd4 7.8 xc6
dxc3 8.0 xb7 Eb8 9.4.d5 A.g7 9...cxb2? runs into 10.4xb2 Exb2 11.%d4 and
both rooks are attacked.

10.b3 H)f6 11.8.e3 Wc7 12.¥d4 a5 13.08.c4 0-0 14.Bael Q.c6 15.e5

O xf3 16.exd6 exd6 17.gxf3 Hh5 18.%yd3 Aes5 Hw..@.&% Hg7 19...8xd4P?
20.%xd4 Bfd8 21.a4 d5 22.4b5 g7 is slightly more precise.

20.He3 £6 21.8fel Hf4 22.%xc3 Hbc8 23.a4? White does not have time for
this. After 23.%d2, Black has compensation for the pawn but not more.

23...%d7 24. 4 xe5? This only opens the f-file for Black’s attack. 24.&h1 limits
the damage.

24...fxe5 25.%h1 ¥h3 26.2g1

26...50d5? A tactical miscalculation. After 26...Bf5, Black’s attack crashes through
sooner or later, e.g., 27.Eg3 ¥h6 28.%al Eh5 29.%gl d5 30.4d3 Hxd3 31.Exd3
BExc2-+.

27.%xa5 Hcs 28.Wa7+ Hc7 29.%a5 Hc5 30.%a7+ 27?1 31.8xc5 dxc5
32.0 xd5 Ef4 33.Bxe5 HExf3?! 34.4 xf3 Modern engines want to continue .roa
with 34.8e7+1? &8 35.Exh7 ¥xh7 36.4xf3 when only White can play for a win.
34..xf3+ 35.5g2 V-1

Readers of Komsomolskaya Pravda — Kissa
Nimzo-Larsen Opening AQ1
(orrespondance match (2), 1972

The second game showed the value of finding a good opening setup. The computer
plays too slow and does not manage to solve the problems of the light-squared
bishop and gets crushed.

1.b3 e5 2.8 b2 N6 3.c4 £6 4.01¢3 Ab4 5.0d5 Hge7 6.a3 A.d6 7.g3 0-0
8.£1.82 Ng6 9.e3 £5 10.5)e2 He8 11.%%c2 e4 12.d3 exd3 13.%xd3 KIS
14.f4 €7 15.h4 h6 16.h5 Hh8 17.e4 d6 18.0-0-0 EHf7 19.5)xe7+ Wxe7
20.5)c3 Q.e6 21.0d5 ¥d7 22.50e3 fxe4 23. 4 xe4 He7 24.0 xb7 Eb8
25.0 e4 D5 26.,0d5 a5 27.g4 Ne7 28.5)xe7+ Exe7 29.g5 hxgs 30.£5
N7 31.fxe6 Hxe6 32.8.d5 We3+ 33.%xe3 Hxe3 34.Hdf1 1-0

Not much else was known about Kaissa until it made its competitive debut in
1974. From discussions with the programmers, some important innovations were in
Kaissa:

* Sophisticated time management, including thinking on the opponent’s time;
* Extensive use of bit boards, probably predating the Cress x.y work;

* Use of the null-move search; and

* Searching using “human-like” reasoning.

Null-move searching was an important idea, whose real strength was not to be
realized for another 15 years. The basic idea is for one side to make an illegal
move in chess - to pass. Forfeiting the move allows the opponent the opportunity
to realize whatever threat they may have in the position. Thus a null-move search
is seen as providing a worst-case scenario. The reasoning goes like this: “If I do
not move and my opponent then wins a knight, then with my move I better find a
way to parry the threat to win my knight.” In other words, a null-move search can
give the program valuable information about the opponent’s threats. Of course, the
above reasoning breaks down in a zugzwang position.

The human-like reasoning, called the Method of Analogies, was especially
intriguing to the research community. The idea was to use analogies to eliminate
parts of the search. Consider a position where a sequence of moves allows White
to win a knight. Suppose later on in the search a similar position is reached — it

1s identical except for a pawn having moved one square forward. The question is
whether White can play the same sequence of moves to win a knight. The Method
of Analogies analyzes all the preconditions needed for a combination to work.

If an irrelevant move does not change any of the preconditions, then the original
combination should still work.

Clearly there was innovative computer chess research going on in the Soviet Union.
Other than the two correspondence games above, the West had no inkling as to

how strong the Kaissa program might be. How do you get an unknown program

in Russia to compete with the top programs in the rest of the world? David Levy
(2005) recounts what happened:

71

72

| e ———————— —

I remember very well in 1973 when we had the ACM tournament in Atlanta, and after
the tournament was over, you [Monty Newborn] and Ben Mittman and I were in the
bar at the Hyatt Regency, and Ben said, “Gee, guys, this is such great fun. What can
we do next?” And I thought for a moment, and 1 said, “Why don’t we have a world
championship?” And so we started talking about it, and then [explained to the twa

of vou that how FIDE organizes its world championship every three years, which

it a.& at that time. And we all agreed that would be a lot of fun. And so we started
thinkine about where we could hold it, and who would sponsor it. I can’t remember
E:oﬁ_.ﬁw it was you or Ben mentioned that the following year there was going to be
an IFIP [International Federation for Information Processing] Congress in Sweden,
in Stockholm. And so somehow contact was made with IFIP. and they liked the idea.
So they put up the money for sponsoring the championships in Stockholm, and we all
went o._..m. to Stockholm. That was very interesting, because we not only had most of the
top programs from the ACM tournament, we also had some European programs who
were able to get there more easily. One of those was Kaissa, the Russian program,
about which we knew nothing before it entered for Stockholm.

The first World Computer Chess Championship (1974) had 13 gﬁa.m.. Runnmnumsm Em
United States (3 programs), Great Britain (3). Canada (2), Soviet Union (. .Pﬁu.,ﬁ (1).
Norway (1), Switzerland (1), and Hungary (1). Kaissa won the tournament, winning all
four games. The pre-tournament favorite, CiEss 4.0. was handed a defeat in round 2 by
Criaos (Ira Ruben, Fred Swartz, Joe Winograd, Victor Berman, William Toikka). ﬂzﬂm
4.0. Craos and Riseir tied for second place with 3 points. After the event, a friendly
game was played between Crgss 4.0 and Karssa; the Northwestern program was unable
to convert a winning position and drew the game.

=

s
)

Mikhail Donskoy (Kasse) at the 1974 World Computer Chess Championship
(Monroe Newborn)

CuEss 4.0 with its Type A search approach lost a beautiful game to Cuaos, a Type
B searcher. In the following position, CHaos played £xe6, a move that is obvious
to masters but fraught with danger for a computer program that cannot search deep
enough to see the full consequences. Using positional factors to compensate for the
lost material, Cuaos found the right move. At the time, £Hxe6 was called the most
beautiful move by a computer chess program.

» -

¢ SRR 7 3
el uﬁmm \W\\“\ Py ==/

The Kaissa team returned triumphant to Moscow. With them they carried the prize
for first place (Donskoy undated):

I was awarded the “Caissa” gold (in the sense of pure gold) medal of the world
champion among chess programs, [and] then deposited [it] in the [Institute of Control
Sciences]. In the years of perestroika, its trace was lost in the museums of various chess
clubs, where she was transferred without the consent of the authors’ team members.

The next year, the Russian computer-chess community achieved another milestone
— helping a grandmaster win an adjourned position (Levy 1988):

Certain standard endgames have been programmed in such a way as to allow perfect
or near-perfect play by computers. This work started in the Soviet Union, with a
routine to play the endgame of king, queen and g-pawn (or b-pawn) against king and
queen. International Grandmaster David Bronstein, who was once a challenger for
the World Championship, actually reached this endgame in the Soviet Union in 1975.
During the adjournment he telephoned the programmers who looked up their database
and told Bronstein how to play. When the game was resumed, Bronstein followed

the program’s recommendation and eventually won (the opponent deviated from the
expected line of play). After the game it was discovered that the program actually had
an error in the key variation, overlooking a stalemate possibility, but I understand that
this mistake was immediately corrected.

In 1977, Kaissa returned to competition at the Second World Computer Chess
Championship in Toronto against a field of 16 competitors. This time there was
role reversal between Kaissa and Cress 4.6. CrEss 4.6 won the event with four
wins and Kaissa tied for second place with Ducugss (Eric Jensen, Tom Truscott,
Bruce Wright) after an early loss to DuchEss. As in 1974, after the event was over
there was a friendly game between CHEss 4.6 and Kaissa. This time the American
program won. With its world championship title, track record in North American
computer chess events, and strong play in human events, CHESs x.Y was clearly the

73

strongest program of its day.

One position at the world championship caused quite a stir. The following position is
from the game DucHess versus Kaissa. DuchEss had just played 34.%a8+ and to the
surprise and amusement of the spectators, Kaissa relied with the incomprehensible
34...He8. Clearly this was an enormous blunder, the result of a programming error.
Even the chess experts in the audience had a good laugh, including former World
Champion Mikhail Botvinnik. It was only after the game that it became known

that Ze8 was forced — the obvious &g7 is refuted by 35.%{8+ leading to mate.

This illustrates the strength of the computer’s “brute-force approach” to search; by
considering all moves, nothing is missed within the search depth. In this case, the
human heuristic approach failed to consider the non-obvious move ¥f8.3

Karssa participated in the 1980 World Computer Chess Championship but finished in
the middle of the pack. By then the team members had moved on to other projects.

Monroe Newborn (1977)
Computer chess developer and event organizer

Masters used to come to computer chess tournaments to laugh. Now they come to
watch. Soon they will come to learn.

Personality

Often a chess player — man or machine — is characterized by their playing style.
For example, Mikhail Tal excited audiences with his aggressive attacking approach
to the game, while Tigran Petrosian was admired for his subtle positional play.
Computer chess programs also have styles, as Shannon noted in his famous paper:

It is interesting that the “style” of play of the machine can be changed very
easily by altering some of the coefficients and numerical factors involved in
the evaluation function and the other programs. By placing high values on
positional weaknesses, etc., a positional-type player results. By more intensive
examination of forced variations it becomes a combination player. Furthermore,
the strength of the play can be easily adjusted by changing the depth of
calculation and by omitting or adding terms to the evaluation function.

74

Thus by changing as little as a single number in a program, one could transform ||
a Tal into a Petrosian, or a patzer into a grandmaster. In other words, computer
programs have the advantage of being able to take on multiple personalities — and
without needing psychiatric help.

During these exciting days of computer chess interest, little was heard from
Richard Greenblatt. MacHack was available on the PDP computers, and was

still arguably the most widely played chess program in the world. However,
Greenblatt had moved on to other projects, most notably designing and building a
special-purpose computer to run programs efficiently that were written in the Lisp
programming language (a John McCarthy creation). Eventually this work would
lead to Greenblatt creating a company to commercialize this work.

MacHack continued to attract attention. In 1977, it was not the strongest program
but, in many circles, was better known than Cuess x.v. This reputation led to an
unexpected encounter. In 1977, former World Champion Bobby Fischer (1943-
2008) showed up at MIT wanting to play MacHack. Since defeating Boris Spassky
for the world title in 1972, Fischer had played no public games. In 1975 he refused
to defend his title against Anatoly Karpov. And then, surprise, he wanted to play
games against a computer.

Not much is known about the circumstances under which the games were played.
Greenblatt was not present. No pictures were taken. The program’s logs of the
game have not been published. Fischer submitted the game scores to a fledgling
publication, the Computer Chess Newsletter, without comments.

MacHack — Fischer, Robert
Sicilian Defense B92
Exhibition match (1), MIT, 1977

1.e4 ¢5 2.2f3 d6 3.d4 cxd4 4. xd4 D6 5.5 c3 a6 6.1 e2 e5 7.)b3 Qe7
8.8.e3 0-0 9.%d3 Qe6 10.0-0 »bd7 HH.@@W Hc8

By E9
\m» \&@»@»

12.)xe7+?

A big mistake probably caused by overestimating the pair of bishops. But now
Black’s dynamics get out of control. 12.c4 is the main move to keep stability, which

75

76

|

also scores quite good for White.

12...¥xe7 13.£32!

13.5d2 d5 14.exd5 £Hxd5 15.c4 Hixe3 16.%xe3 is not as weakening.
13...d5 14.5)d2 ¥b4 14...d4P?

15.53b3? Black initiative gets very dangerous now.

15.%b3, to trade queens, eases the defensive task, e.g., 15...&xb3 16.cxb3 d4
17.8.g5 Ec2 18.Habl h6 19.8d3 HEcb 20.8xf6 gxf6 21.f4 and White is only
slightly worse.

15...dxe4 16.¥d1?! ,nd5

17.8.a7?

A typical computer mistake in those days. The bishop will either not see the light of
day again or White will have to invest more material to free it. 17.c3 %e7 18.%d2
limits the damage.

17...b6 18.c3 ¥e7 19.fxe4 He3 20.%%d3 N xf1 21. % xa6 21 Hxf1 Hc7
22 ¥xab Ha8—+

21...3e3 22. 8 xb6 ¥g5 23.g3 Ha8 24. 48 a7 h5 25.&b7 h4 26. %12 hxg3+
27.hxg3 f5 28.exf5 Exf5+ 29.Fel Haf8 30.Ld2 Ncd+ 31.Fc2 Wegb
32.%e4 DNd6 33.%c6 B2+ 34.F9d1 Qg4 35.Q xf2 ¥d3+ 36.FHcl H.xe2
37.0d2 Exf2 38. % xd7 Ef1+ 39.)\xf1 Wd1# 0-1

One can only imagine what went through Fischer’s mind as he saw the numerous
weak moves played by the program. Two more games were played that day, each
an easy win for the former World Champion.

In 1978, MacHack played a correspondence game (one move per week) against the
readers of a German computer magazine, Computerwoche (Computer Week). The game
was even until MacHack self-destructed, the result of not searching deep enough.

(W-Leser — MacHack
Petroff Defense (42
Schach dem Computer, Computerwoche, 1978

1.e4 e5 2.20f3 &6 3.5 xe5 d6 4.0f3 Nxe4 5.d4 d5 6.2.d3 Qe7 7.h3 0-0

A o

8.0-0 £)c6 9.5 ¢3 Hixc3 10.bxc3 He6 11. 4.4 He8 12.Hel Wd7 13.Hbl
Hab8 14.5)g5 .65 15.%h5 Q.xg5 16.¥xg5 Exel+ 17.Exel Q.e6 18.&g3
Ec819.8.h6 g6 20.%h4 £5 21.£6 LH\xd4 22.cxd4 ¢6 1-0

Greenblatt realized early on that a faster computer meant deeper searches, and
deeper searches meant stronger play. He knew what he could achieve on a
commercially available computer, but he wondered what might be possible on

a computer that was specially designed for computer chess. In the late 1970s

MIT professor Edward Fredkin and Greenblatt worked on developing computer
hardware that was specifically designed to facilitate the needs of a chess-playing
program. Their system, CHEOPS (CHEss-Orientated Processing System), was in
some sense a throwback to the EL AJEDRECISTA approach. The hardware included an
8x8 board, allowing for fast parallel generation of legal moves. Unfortunately the
machine could only be as fast as its slowest component — the position evaluation
function — that was done largely in software. This went against Amdahl’s Law, a
well-known computing limit to performance. Assume that a chess search takes 100
seconds, and that 60% of the time is spent doing position evaluation. If you reduce
the 40% component to zero — say by building a special-purpose computer — you
still are limited by the 60% that is not any faster. Your 100 seconds becomes 60,
1.67 times faster, but no better. And so it was with CHEOPS. Although a working
prototype of the machine was completed, it did not play many games before the
project was abandoned.

Meanwhile, 1978 was fast approaching, the deadline for David Levy’s bet. It was
pretty clear that he would win — none of the programs were playing close to 2000
ELO in 1977. Levy dutifully began to play two-game matches against the leading
computer program “threats.” First up was CHess 4.5 in April 1977. Levy easily
won the first game thereby clinching at least a draw in the match; the second game
was not played. Next up was Kaissa in December 1977. An easy win in game one
negated the need for the second game.

Levy, David (2320) — Kaissa
English Opening A20
Montreal, 17.12.1977

1.d3 Hicb 2.¢4 €5 3.g3 H.c5 4.082 N6 5.0¢3 0-0 6.3 Be7 7.)ge2
ADb68.0-0d6 9.a3 Qg4 10.b4 We6 11.20d5 A xe2 12. ¥ xe2 Ng4
13.8.d2 Habl 14.a4 a6 15.a5 a7 16.b5 axb5 17.cxb5 e4 18.bxc6
Wxd5 19.%xg4 Wxd3 20.EHfd1 £5 21.%g5 bxc6 22. 4.1 ¥b3 23.Hdcl
h6 24.%g6 ¥b7 25.26 ¥c8 26.Hc3 Hf6 27.%h5 ¥d7 28.%acl f4.c5
29.Hcl1xc5 dxc5 30.2xf6 gxf6 31. g6+ ¥g7 32.¥% xf5 (adjudicated 1-0)
Then it was MacHack’s turn in August 1978, this time using CHEOPS. Same
result: a Levy win in game one and a won match.

77

P R ———————————————————=

78

MacHack/CHEOPS — Levy, David (2320)
Sicilian Dragon B71
(ambridge, Massachusetts, 23.08.1978

1.e4 ¢5 2.20f3 d6 3.d4 cxd4 4.5 xd4 DE6 5.00¢3 g6 6.f4 H.g7 7.5

Hhs 8.8b5+ £ d7 9.6 fxe6 10.H)xe6 § xc3+ 11.bxc3 W8 The end of
MacHack’s book. 12.¥d4 96 13.¥¢c4 Nc6 14.0d4 Hxd4 15.cxd4 Yrxc4
16.8.xc4 815 17.84 b5+ Hf7 18.H.c4+ d5 19.0.d3 EHfcl 20.0-0 Ec7
21.5Hb1 Hac8 22.H.e3 He4 23.5Hf3 Hd6 24.2Hb2 b6 25.a4 A xd3 26.cxd3
Hc3 27.2h3 h5 28.8d2 Hc2 29.5xc2 BExc2 30.8.el N5 (0-1 in 43 moves)

Immediately after playing MacHack, Levy went to Toronto for one final match.
The opponent was CHEss 4.7, a stronger opponent than CHess 4.5 that he played
the year before. The faster computer that it used was already paying dividends in
human tournaments, and it was realistic to expect the program to be playing at

a 2000 USCF level. Still, Levy was rated 2320 ELQO, a large gap. The apparent
difference in strength had to be tempered by Levy’s lack of play in the past few
years. Like most strong chess players, he had quickly discovered the life of a chess
professional was financially challenging, and he had moved on to other pursuits
(including a prolific career writing chess books).

On August 26, 1978, the 6-game match between David Levy and Cuess 4.7 began.
At stake was pride and the value of the infamous bet. Levy recounts the playing
conditions (Levy 2005):

The match was played in a soundproof glass booth at the Canadian National
Exhibition, which is a big exhibition held every year in Toronto. And I had to wear a
tuxedo, which is not normal for me. In the 19th century, grandmasters used to wear
tuxedos when they played important tournaments, and the early part of the 20th
century, so it was sort of nice. And I was playing against the Slate and Atkin program,
CuEss 4.7, running on a CDC Cyber computer, a very powerful computer located in
Minneapolis. When I tumed up to play the first game, and sat down, I was expecting
David Slate or Larry Atkin to be sitting opposite me making the moves. Instead of
which, they wheeled in this really attractive young lady. They clearly decided that
they were going to distract me. And she sat there smiling at me the whole time. It was
really quite difficult. I had to sort of do what I do in human tournaments, and put my
hands like this [shielding his eyes] and look down at the board when I was thinking.
And then between moves when I was relaxing, I was sitting there, and she just sat
there smiling at me. It wasn’t the easiest circumstance under which to play.

Clearly the Chess 4.7 team had adopted an interesting psychological strategy.
But Levy also had prepared a strategy, one that he felt could exploit the known
limitations of his opponent:

But I worked out my strategy beforehand, and I developed this sort of anti-computer
strategy. And in those days the strategy was very successful, because programs could
see a certain distance ahead, but they couldn’t see very far ahead. So what you had

to be careful of is, you had to be careful of very short-term tactical tricks. You had

to just check that there wasn’t some sequence of three or five, or maybe even seven
moves, that the program could win material, or do something really unpleasant to you.

And once you got past that, if you could accomplish that safely, then you just have

to develop a long-term strategy for the game. And so I developed a very sort of super
long-term strategy. I made moves that appeared to have no point at the time, but they
were moves which I knew if the game developed as I expected it would, would have a
point much later on. But so far into the future that the program couldn’t understand it.
And the result of that was that the program basically had no idea what was going on.
It was just playing the current position with no regard for long-term strategy. Every
now and again, it would make a move that created a slight weakness in its position,

or move the piece from one part of the board away to where it wasn’t defending some
area that I wanted to go into much later.

This idea of devising an anti-computer strategy was quite popular for several
decades. Even today, with super-human chess-playing programs, work continues on
devising ways to exploit perceived weaknesses in the machine’s play. All is fair in
love and war.

If Levy expected an easy match, he quickly had a rude awakening:

Well, the first game was almost a disaster. Because I did it [making moves that
appeared to have no point at the time] too much, and I was in serious trouble, and I
very nearly lost the first game. But I managed to draw.

Levy, David (2320) — Cess 4.7

Refi Opening AQ7

Toronto match (1), 26.08.1978

1.g3 d5 2.0.g2 e5 3.d3 Y6 4.0\ €3 £Hc6 5.0-0 H.d7?2!
Very strange for the human eye.

6.b32!

6.d4 e4d 7.0e5 Ad6 8.Hxd7 ¥xd7 9.c4 dxcd 10.¢3 #f5 11.%a4 is more in the
spirit of the position.

6...8.¢57.2b2 ¥e7 8.a3?!

This allows Black to take the initiative.

8...e4! 9.5\el 0-0 10.d4 §4.d6

11.e3?
79

80

This slow move weakens the light squares. 11.c4 is called for.
11....0g4 12.h3?

Inviting the following strong strike. But good advice is hard to give.

12...5)xe3!
A correct sacrifice.
13.fxe3 Wg5 14.g4?

14.0f3 ¥xe3+ 15.8h2 exf3 16.Exf3 ¥h6 17.5¢3 limits the damage, but Black is
of course on top after 17...8.g4.

14...Wxe3+
14...f57.
15.8f2

15...8.g3!

This should also win in the long run. But the direct attack, 15...f5, pays much
higher dividends, e.g., 16.£8c1 ¥g3 17.¢5 f4 18.5d2 &xh3 19.5f1 ¥xg5 20.5h2
Hg3—+.

16.%e2 ¥ xf2+ 17. & xf2 Q xf2+ 18.Fxf2 £5!
Opening inroads against White’s king.
19.gxf5

19.g5 £4 20.5¢3 Ef5 is also very grim.

19...e7 20.c4 Exf5+ 21.9g1 c6 22.5\c3 HEh5 23.&h2 BEf8 24.\d1 Hg6
25.Hcl Q.xh3 26.8.xh3 Bf1 27..hg2

27.9e3 Bf2+ 28. &gl Hxb2-+.

27...8f3 28.cxd5 HEhxh3+ 29.%g1 cxd5 30.Hc8+ N8

30...Ef8P, to try to exchange White’s active rook, is also very strong.
31.4.¢c3 Bd3

31..5f71? 32.Hc7+ &6 33.8xb7 Heb was easier.

32.,0de3 Hhxe3 33.5)xe3 Hxe3 34. 8 b4 Hf3 35.2d8 h6 36.2xd5

36...Hxb3?!

This greedy capture has no priority. The knight should be activated by 36...5e6
37.2d7 Bxb3 38.d5 Hd4 39.d6 e3, which wins relatively easily. In the following
endgame phase, CHEss 4.7 underestimates the importance of activity in general.
Modern programs would doubtlessly win it but in the game Levy even gets a
chance to win it.

37.Kd8 Xf3 38.Has8 g5?! 39.d57!

39...h5?!

This makes the technical task much more difficult by giving up winning potential
which should be preserved by 39...a6!? 40.He8 b6 41.Bxed a5 42.8d6 Hgo—+.

81

82

40.d6

40.Exa7 b6 41.8e7 Hgb 42.Hxe4 Ff7 should also win in the long run.
40...3g7 41.FHxa7 Bf7 42.8a5 Pf6 43.0.c3+ Hgb 44.He5 BEf3 45.8b4

45.. . 2Hf4?

Black’s rook should help its own pawns with 45...Be3, with excellent winning

chances.

46.He7 Hf7 47.Hxed

47..2d7

47...5d7 is more logical from a human point of view, as the knight w.m a better
blockader than the rook. But White’s activity most probably saves him here as well.

48.He7 h4 49.9g2 g4 50.%h2 b6 51.Fg2 Hd8 52.24 Hd7 53.a5 Hf6

54.axb6 £d5 55.b7

»

ANES

[L
ﬁ&‘

55...5\xe7?

This greedy capture is probably a result of the horizon effect as the zwischenschach
55..h3+ draws, e.g., 56.8g3 Hxe7 57.dxe7 Bh8 58.4.c3 Eg8 59.4a5 Bh8
60.4d8 h2 61.b8¥ h1 62.%d6+=.

56.dxe7 EhS8

57.8.d6?

Levy rushes to win the rook but misses winning the game with 57.£8.c3 Eg8 (57...
h3+58.%h1+-) 58.4a5 h3+ 59.&2h1 2b8 60.4.c7 He8 61.4d8+-.

57... 96 58.b8% Hxb8 59. 0 xb8 Lxe7 60. A4 HF6 61.0.d2 Hg6
62.0e1 Bg5 63.0F2 Hh5 64.0el V-l

Despite the close call, Levy stuck to his strategy and it paid off — he won games
two and three:

But pretty soon in the match, my strategy worked, and I was winning game after game
very comfortably. I remember in particular one of the games where I played an English
opening, but I played it as though I was playing a Sicilian defense but with white. ... I
knew exactly what the long-term strategy was. The long-term strategy in the Sicilian

is that you play to reach an endgame; an endgame with a particular kind of formation,
which if you can get there in the Sicilian defense, you stand pretty well. So with the
extra move, you would stand even better. That was my long-term goal, and I pushed the
program off the board.

Levy, David (2320) — Chess 4.7

English Opening AQO

Toronto match (3), 28.08.1978

1.c4 D6 2.a3 N6 3.0¢3 d5 4.cxd5 Hxd5 5.d3 Hxc3 6.bxc3 e5 7.g3
He78.8g2 ¥d6?! 9..0f3 A e6 10.0-0 0-0 11. a4 52! 12.4.d2 b5?!
Bad from a positional point of view. It just weakens too many squares.
13.%c2 £6 14.5fb1 Had8?!

15. %b2?!

Levy misses or intentionally avoids the tactical possibility 15.£&e3 Hd4 16.%d1
Oxf3+ 17.8.x13 ¥xc3 18.Hxb5 ¢6 19.8bb1 +.

15...5b8 16.Q.e3 ¥d6 17..0d2 H.d5 18..8 xd5+ ¥xd5 19.¥b3!?
Levy knows that the endgame is a weakness of the program and heads for it.
19...%xb3 20.2xb3 £5 21.4.c5 4.d6 22.%b2

22...Hh8?
The wrong direction, as an endgame is not a middlegame. 22...%f7 is called for.
23.Hab1l a6 24.Q xd6 cxd6 25.2)d2

84

In the early days of computer chess, the endgame was a big problem for the

machines because of the importance of long-term planning and thinking in patterns.

CnEss 4.7 plays the following ending badly.
25...£4?

This just weakens the e4-square and wastes precious time. From a human point of
view, it is clear that 25...&g8 should be played.

26.9g2 fxg3?! 27.hxg3 Ebd8?! 28.a4! Ha7?!
28...bxad! 29.Hb6 He7 30.Ded =

29.5\e4?

Opening the queenside directly with 29.c4 makes better use of White’s better
mobilization, e.g., 29...bxa4 (29...bxc4 30.0xc4 Hc8 31.82b8 Hfe8 32.2a8 d5
33.5e3+-) 30.Eb6 h6 31.8xab Bf7 32.Ebb6+-.

29...bxa4?!

29...d5 30.4¢5 Bf6 31.2al $g8 32.axb5 HHxb5 33.c4 dxcd 34.dxcd Hc7 is better
but White remains for choice of course.
30.82b6 d5 31.90¢c5 Hb5 32.5\xa4 Ha8?

Passive. 32...Ec8 33.8Bxa6 £Hxc3 34.6xc3 Hxc3 35.Heb e4 36.dxed dxed 37.Bxed
B 7 offers much better practical chances.

33.c4 dxc4 34.dxc4

85

Y

34....0d4?

Caess 4.7 underestimates the danger posed by White’s passed c-pawn. 34...£c7 is
necessary.

35.e3 HNf3?! 36.c5 Ng5 37.c6 He4?!
37..9e6 38.Hcl Ef7 39.2b7 $g8 40.0b6+-
38.c7 Hxf2+ 39.%gl Zff8 40.Eb8 h5 41.Hxa8 Hxa8 42.Kb8+ 1-0

With 2/ points, he needed only a draw in the remaining three games to win his
bet. Things had gone so well for him in the previous two games that he became
complacent and, well, that is when bad things usually happen.
... I was feeling pretty confident. And then I decided to take a chance. I"d been
very successful with my strategy. I felt very confident that I could use that strategy
probably to win every game in the rest of the match if I needed to. So I decided to take
the chance and see what would happen if I played very sharp tactical chess. I played
a really unsound opening, and the position got very sharp, and the program just killed
me.

Ciess 4.7 — Levy, David (2320)
Latvian Gombit C40
Toronto match (4), 29.08.1978

1.e4 €5 2..5\f3 f5 3.exf5 e4 4.0 e5 D6 5..)g4
A rare sideline but maybe not bad. 5.8.e2 is the main line.

5...d5 6.5 xf6+ ¥ xf6 7. h5+ W7 8. xf7+ Hxf7 9.9 ¢c3 ¢6 10.d3 exd3
11.8.xd3 Hd7 12. 4.4 Hc5 13.g4 Hxd3+ 14.cxd3 Q.c5

86

15.0-0?

This castles into an attack. 15.h3 h5 16.&e2 is a better location for the king in this
endgame.

15...h5 16.5)a4?
Misplacing the knight. 16.8e3 £d6 17.h3 is the lesser evil.
16...9.d4 17.4.e3 Qe5 18.d4 £.d6 19.h3 b6?

Too slow. After the direct 19...g6, Black is clearly better because of his bishops and
his attack.

20.2fel?

It is better to try to escape from the danger zone with 20.®g2, but king safety was a
difficult issue for the computers in those days.

20...8d7 21.\c3?!
21.&g2 is still preferable.
21...hxg4 22.hxg4 Hh4 23.f3 2ah8 24. 917! A g3?

24...Eh3 hits the Achilles’ heel f3 directly and is much stronger. Black has a
winning attack.

&

25.Re2?

87

88

CHess 4.7 underestimates Black’s coming initiative. It had to exchange attacking
potential with 25.8f2 & xf2 26.&xf2 BEh2+ 27.%g3 Hxb2 28.He2 and White is

not worse.

25...0.c8 26.Hg2 4 d6?

The wrong order of moves. After 26...8h3 27.48.g1, the bishop can retreat with 27...
Af4 which gives Black a strong initiative.

27.9g1 Eh3

28.Hael?

Probably a more or less automatic choice for CrEss 4.7 as rooks belong on open
files and the al-rook was undeveloped. But the exchange sacrifice 28.Ze5!! is much
stronger. But such sacrifices posed large problems for the programs for a very long
time. But nowadays the programmers seem to have found ways to deal with this
problem as the modern programs find it very quickly.

28...Bg3+ 29.Hf2 Ehh3 30.Xe3

30...8.a6?

Levy miscalculates. After the direct 30... 44! 31. Be7+ &f6, White faces a very
unpleasant defensive task.

31.5e2 Q xe2 32, H1xe2 c5!

Now it is too late for 32...4f4? in view of 33.He7+ g8 34.He8+ &h7 35.H2e7 A.g5
36.Exa7 416 37.Haa8 gb 38.fxgb+ Hxgb 39.2e6 Bxf3+ 40.Be2 Hfg3 41 Hf8=.

33.f4! BExe3
33...8xt4? runs into 34.Hxg3 Hxg3 35.4h2 Exg4 36.9f3+-,
34.2xe3

34...Hh4!

A very difficult decision as 34...Exe3 35.%xe3 b3! also gives practical drawing
chances. Against a computer, it is probably preferable as long-term planning plays
a large role in the resulting bishop ending. With the rooks, the computer has more
short-term goals.

35.%g3 Hh1 36.4.f2 Hd1 37.2a3 cxd4 38.FExa7+

38...f8?
38...%e8 was the last real chance to fight as Bd7 must be stopped.
39.8d7 Hd3+ 40.&g2 Qc5

40...8xF4 41.Bxd5 Qe3 42.8xe3 HExe3 43.5f2 Hed (43...Bh3 44.8b5 +-) 44.9f3
He3+ 45.8f4 He2 46.5b5 d3 47.5xb6 d2 48.5d6 +—.

41.Hxd5 Hd2 42.b4 {.xb4 43.5d8+?!
The direct 43.Hxd4 is better technique and transposes to the game.
43...9f7 44.2d7+

89

90

44...918?

44...8.e7 45.8f3 Be8 46.8xd4 Exa2 47.Ed5 should be winning for White but it
offers much more resistance than the game continuation.

45.8xd4 BEb2 46.Hf3 A.c5?1 47.Hd8+ He7
47...Bf7 48.84xc5 bxc5 49.g5 Hxa2 50.g6+ ®e7 51.Hg8 &f6 52.8f8++—.

48.9. h4+ Hf7 49.g5 g6 50.Hd7+ I8 51.fxg6 Exa2 52.f5 Ha3+ 53. g4
EHa4+ 54.%hs Hd4 55.8c7 Qe71-0

This was the first time that an International Master had lost to a computer program
under tournament conditions. Now the match was much more interesting to the
chess world and to the media.

So after that game I was still leading 2% to 1%. So we played four of the games, and
there were two more games to come. So then I said, “Okay, David, this is time to take

it seriously.” So I sort of buckled down, and in the fifth game I pushed it off the board
again with my long-term strategy and the match was over, because I’d scored 3% points.

The match was over; Levy had an unassailable lead. He later reflected on his
opponent’s ability:

... How strong was the program? It was a lot weaker than me. I would say it was at
least 200 points weaker than me. It was good enough that if I’d made a stupid mistake
it would’ve beaten me. Or playing a very risky strategy, as I did in game four, it could
beat me. But as long as I was careful, it had no chance.

Levy’s historic 1968 bet had comes to an end: man triumphed over machine (Levy
and Newborn 1980):

Thus ended an era in the annals of computer chess. I had proved that my 1968
assessment had been correct, but on the other hand my opponent in this match was
very, very much stronger than I had believed possible when I started the bet.

Then there was the matter of collecting his money:

When sending me his cheque for £250 Professor John McCarthy expressed a sentiment
[with] which I concurred — he said that had I lost to a brute-force program he would
not have felt that the science of Artificial Intelligence was responsible for my defeat.
McCarthy, Michie and Papert all paid promptly and with good sportsmanship, just as I
would have done had I lost the bet. Only Edward Kozdrowicki did not.

Having won the match, albeit with a closer score than he anticipated in 1968, Levy
remained confident. Perhaps another bet?

91

